A direct proof of Stahl's theorem for a generic class of algebraic functions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Under the assumption that Stahl's $S$-compact set exists we give a short proof of the limiting distribution of the zeros of Pade polynomials and the convergence in capacity of diagonal Pade approximants for a generic class of algebraic functions. The proof is direct, rather than by contradiction as Stahl's original proof was. The ‘generic class’ means, in particular, that all the ramification points of the multisheeted Riemann surface of the algebraic function in question are of the second order (that is, all branch points of the function are of square root type). As a consequence, a conjecture of Gonchar relating to Pade approximations is proved for this class of algebraic functions. We do not use the relations of orthogonality for Pade polynomials. The proof is based on the maximum principle only. Bibliography: 19 titles.

About the authors

Sergey Pavlovich Suetin

Steklov Mathematical Institute of Russian Academy of Sciences

Email: suetin@mi-ras.ru
Doctor of physico-mathematical sciences, no status

References

  1. А. И. Аптекарев, В. И. Буслаев, А. Мартинес-Финкельштейн, С. П. Суетин, “Аппроксимации Паде, непрерывные дроби и ортогональные многочлены”, УМН, 66:6(402) (2011), 37–122
  2. A. I. Aptekarev, M. L. Yattselev, “Pade approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280
  3. В. И. Буслаев, “О нижней оценке скорости сходимости многоточечных аппроксимаций Паде кусочно аналитических функций”, Изв. РАН. Сер. матем., 85:3 (2021), 13–29
  4. Е. М. Чирка, “Емкости на компактной римановой поверхности”, Труды МИАН, 311, Анализ и математическая физика. Сборник статей. К 70-летию со дня рождения профессора Армена Глебовича Сергеева (2020), 41–83
  5. А. А. Гончар, Е. А. Рахманов, “Равновесные распределения и скорость рациональной аппроксимации аналитических функций”, Матем. сб., 134(176):3(11) (1987), 306–352
  6. А. В. Комлов, “Полиномиальная $m$-система Эрмита–Паде для мероморфных функций на компактной римановой поверхности”, Матем. сб., 212:12 (2021), 40–76
  7. Н. С. Ландкоф, Основы современной теории потенцила, Наука, М., 1966, 515 с.
  8. А. Мартинес-Финкельштейн, Е. А. Рахманов, С. П. Суетин, “Вариация равновесной энергии и $S$-свойство стационарного компакта”, Матем. сб., 202:12 (2011), 113–136
  9. J. Nuttall, S. R. Singh, “Orthogonal polynomials and Pade approximants associated with a system of arcs”, J. Approx. Theory, 21:1 (1977), 1–42
  10. J. Nuttall, “Asymptotics of diagonal Hermite–Pade polynomials”, J. Approx. Theory, 42:4 (1984), 299–386
  11. Е. А. Перевозникова, Е. А. Рахманов, Вариация равновесной энергии и $S$-свойство компактов минимальной емкости, Рукопись, 1994
  12. Е. А. Рахманов, “О сходимости диагональных аппроксимаций Паде”, Матем. сб., 104(146):2(10) (1977), 271–291
  13. E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239
  14. E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by T. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp.
  15. H. Stahl, “Three different approaches to a proof of convergence for Pade approximants”, Rational approximation and applications in mathematics and physics (Łancut, 1985), Lecture Notes in Math., 1237, Springer, Berlin, 1987, 79–124
  16. H. Stahl, “Diagonal Pade approximants to hyperelliptic functions”, Ann. Fac. Sci. Toulouse Math. (6), 1996, special issue, 121–193
  17. H. Stahl, “The convergence of Pade approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204
  18. H. R. Stahl, Sets of minimal capacity and extremal domains
  19. М. Л. Ятцелев, “Сходимость двухточечных аппроксимаций Паде к кусочно голоморфным функциям”, Матем. сб., 212:11 (2021), 128–164

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Suetin S.P.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».