Lüroth's theorem for fields of rational functions in infinitely many permuted variables
- 作者: Rovinskii M.Z.1
-
隶属关系:
- Laboratory of Algebraic Geometry and Its Applications, National Research University Higher School of Economics, Moscow, Russia
- 期: 卷 216, 编号 9 (2025)
- 页面: 86-113
- 栏目: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/309465
- DOI: https://doi.org/10.4213/sm10234
- ID: 309465
如何引用文章
详细
Lüroth's theorem describes the dominant maps from rational curves over a field. We study those dominant rational maps from cartesian powers $X^{\Psi}$ of geometrically irreducible varieties $X$ over a field $k$ for infinite sets $\Psi$ that are equivariant with respect to all permutations of the factors $X$. At least some of such maps arise as compositions $h\colon X^{\Psi}\xrightarrow{f^{\Psi}}Y^{\Psi}\to H\setminus Y^{\Psi}$, where $X\xrightarrow{f}Y$ is a dominant $k$-map and $H$ is a group of birational automorphisms of $Y|k$, acting diagonally on $Y^{\Psi}$.In characteristic 0 we show that this construction, when properly modified, produces all dominant equivariant maps from $X^{\Psi}$ in the case $\dim X=1$. For arbitrary $X$ some partial results are obtained.Also, a similar problem of the description of equivariant integral schemes over $X^{\Psi}$ of finite type is touched very briefly.
作者简介
Marat Rovinskii
Laboratory of Algebraic Geometry and Its Applications, National Research University Higher School of Economics, Moscow, Russia
编辑信件的主要联系方式.
Email: marat@mccme.ru
Doctor of physico-mathematical sciences
参考
- M. Demazure, “Sous-groupes algebriques de rang maximum du groupe de Cremona”, Ann. Sci. Ec. Norm. Super. (4), 3:4 (1970), 507–588
- D. M. Evans, P. R. Hewitt, “Continuous cohomology of permutation groups on profinite modules”, Comm. Algebra, 34:4 (2006), 1251–1264
- A. Grothendieck, J. Dieudonne, “Elements de geometrie algebrique. III. Etude cohomologique des faisceaux coherents. I”, Publ. Math. Inst. Hautes Etudes Sci., 11 (1961), 5–167
- M. Hanamura, “On the birational automorphism groups of algebraic varieties”, Compos. Math., 63:1 (1987), 123–142
- S. MacLane, “The universality of formal power series fields”, Bull. Amer. Math. Soc., 45:12 (1939), 888–890
- S. Montgomery, “Hopf Galois theory: a survey”, New topological contexts for Galois theory and algebraic geometry (BIRS 2008), Geom. Topol. Monogr., 16, Geom. Topol. Publ., Coventry, 2009, 367–400
- R. Nagpal, A. Snowden, Symmetric subvarieties of infinite affine space
- M. Rovinsky, “Motives and admissible representations of automorphism groups of fields”, Math. Z., 249:1 (2005), 163–221
- M. Rovinsky, “Semilinear representations of symmetric groups and of automorphism groups of universal domains”, Selecta Math. (N.S.), 24:3 (2018), 2319–2349
- J. H. Silverman, The arithmetic of elliptic curves, Grad. Texts in Math., 106, 2nd ed., Springer, Dordrecht, 2009, xx+513 pp.
- J. Tate, “Algebraic formulas in arbitrary characteristic”: S. Lang, Elliptic functions, Appendix 1, Grad. Texts in Math., 112, 2nd ed., Springer-Verlag, New York, 1987, 299–306
补充文件
