Magnetospectroscopy of double HgTe/CdHgTe quantum wells


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The magnetoabsorption spectra in double HgTe/CdHgTe quantum wells (QWs) with normal and inverted band structures are investigated. The Landau levels in symmetric QWs with a rectangular potential profile are calculated based on the Kane 8 × 8 model. The presence of a tunnel-transparent barrier is shown to lead to the splitting of states and “doubling” of the main magnetoabsorption lines. At a QW width close to the critical one the presence of band inversion and the emergence of a gapless band structure, similar to bilayer graphene, are shown for a structure with a single QW. The shift of magnetoabsorption lines as the carrier concentration changes due to the persistent photoconductivity effect associated with a change in the potential profile because of trap charge exchange is detected. This opens up the possibility for controlling topological phase transitions in such structures.

Sobre autores

L. Bovkun

Institute for Physics of Microstructures

Email: antikon@ipmras.ru
Rússia, Nizhny Novgorod, 603950

S. Krishtopenko

Institute for Physics of Microstructures; Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM

Email: antikon@ipmras.ru
Rússia, Nizhny Novgorod, 603950; Montpellier, 34095

A. Ikonnikov

Institute for Physics of Microstructures; Lobachevsky Nizhny Novgorod State University

Autor responsável pela correspondência
Email: antikon@ipmras.ru
Rússia, Nizhny Novgorod, 603950; Nizhny Novgorod, 603950

V. Aleshkin

Institute for Physics of Microstructures; Lobachevsky Nizhny Novgorod State University

Email: antikon@ipmras.ru
Rússia, Nizhny Novgorod, 603950; Nizhny Novgorod, 603950

A. Kadykov

Institute for Physics of Microstructures; Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM

Email: antikon@ipmras.ru
Rússia, Nizhny Novgorod, 603950; Montpellier, 34095

S. Ruffenach

Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM

Email: antikon@ipmras.ru
França, Montpellier, 34095

C. Consejo

Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM

Email: antikon@ipmras.ru
França, Montpellier, 34095

F. Teppe

Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM

Email: antikon@ipmras.ru
França, Montpellier, 34095

W. Knap

Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM

Email: antikon@ipmras.ru
França, Montpellier, 34095

M. Orlita

Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA

Email: antikon@ipmras.ru
França, Grenoble, FR-38042

B. Piot

Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA

Email: antikon@ipmras.ru
França, Grenoble, FR-38042

M. Potemski

Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA

Email: antikon@ipmras.ru
França, Grenoble, FR-38042

N. Mikhailov

Rzhanov Institute of Semiconductor Physics; Novosibirsk State University

Email: antikon@ipmras.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

S. Dvoretskii

Rzhanov Institute of Semiconductor Physics

Email: antikon@ipmras.ru
Rússia, Novosibirsk, 630090

V. Gavrilenko

Institute for Physics of Microstructures; Lobachevsky Nizhny Novgorod State University

Email: antikon@ipmras.ru
Rússia, Nizhny Novgorod, 603950; Nizhny Novgorod, 603950

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016