Regression model for managing technical risks of production energy supply

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We explored various aspects of technical risk management in industrial energy supply, including the identification of key factors influencing the occurrence of risks, methods for analyzing and predicting technical risks, and risk management strategies to ensure production continuity. Considering regression models in the context of technical risk management will help businesses to develop effective strategies to prevent potential threats and ensure operational stability and reliability.

Texto integral

Acesso é fechado

Sobre autores

R. Pigilova

FSBEI HE Kazan State Power Engineering University (FSBEI HE KSPEU)

Autor responsável pela correspondência
Email: rozapigilova@yandex.ru

Lecturer

Rússia, Kazan, Republic of Tatarstan

F. Rakhmonov

FSBEI HE Kazan State Power Engineering University (FSBEI HE KSPEU)

Email: rahmonovfarhod2004@gmail.com

Student

Rússia, Kazan, Republic of Tatarstan

Bibliografia

  1. Svalova V.B., Zaalishvili V.B., Ganapathy G.P., Ivanov P.G., Sustainable Development of Mountain Territories, 2020, vol. 12, no. 1(43), pp. 162–170. doi: 10.21177/1998-4502-2020-12-1-162-170. EDN KEZQHF.
  2. Pigilova R.N., International Journal of Advanced Studies in Computer Engineering, 2023, no. 2, pp. 31–35. EDN PPEAAW.
  3. Malysheva T.V., Kompetentnost’, 2020, no. 4, pp. 24–27.
  4. Kamasheva A.I., Pigilova R.N. Ecology and life safety, XXII Int. sc. and pract. conf., ed. by V.A. Seleznev, I.A. Lukshin, Penza, PGAU, 2022, pp. 138–141. EDN ZKUHNI.
  5. Certificate of state registration of the computer program N 2020666077 RF. Separated scalable system for collecting, processing, searching and analyzing data Technology for analyzing and collecting information TAIS N 2020665421; decl. 27.11.2020; publ. 4.12.2020, I.A. Karpov, S.A. Abakhov, M.A. Pendyukhov; applicant LLC Analytical software solutions. EDN UCIHFU.
  6. Altunin S.S., Mezhdunarodnyy nauchnyy studencheskiy zhurnal, 2019, no. 8, pp. 23–25. EDN OHQARD.
  7. Federal State Statistics Service; http://www.gks.ru/.
  8. Johnson S., Energy Management Journal, 2020, vol. 18, pp. 75–89.
  9. Spivak N.S., E-Scio, 2019, no. 6(33), pp. 742–749. EDN ZNGJRA.
  10. Bulatov T.A. Automatic analysis of the state of high-voltage electric motors in own needs system of a thermal power plant, XXVI All-Russian postgraduate and master’s scientific seminar dedicated to the Day of the power engineer, in 3 vol., gen. ed. by E.Yu. Abdullazyanov, Kazan’, KGEU, 2023, vol. 1, pp. 13–15. EDN XYZDOB.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Evolution of types of organization for determining technical risks

Baixar (31KB)
3. Fig. 2. Typical scheme of a technological radio network for data exchange and collection in a control system

Baixar (45KB)
4. Fig. 3. Factors to consider when choosing a regression model

Baixar (8KB)
5. Fig. 4. Energy consumption management and regression analysis of data on risky inflows from the base in multifunctional systems

Baixar (19KB)

Declaração de direitos autorais © АСМС, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).