Thermomechanical rolling in well casing production (research review)

Cover Page

Full Text

Abstract

Introduction. The modern oil and gas industry requires the development of high strength materials for well casing. Changes in rolled steel production technologies are one of the urgent tasks. Reducing the cost of high quality steel well casing is becoming a major challenge for the oil and gas industry. Multiphase microstructures containing acicular ferrite or an acicular ferrite-dominated phase exhibit good complex properties in HSLA steels. This paper focuses on the results obtained using modern methods of thermomechanical rolling. Results and discussion. This work analyzes the characteristics of thermomechanical rolling technologies and its impact on the microstructure of rolled steel for well casing. It is shown that predicting mechanical properties based on the microstructural characteristics of steel is complicated due to the large number of parameters involved. This requires an optimal microstructure of the steel. A satisfactory microstructure depends on several factors, such as chemical composition, hot work processing, and accelerated cooling. Alloying elements have a complex effect on the properties of steel, and alloying additives are usually introduced into the steel composition. From a metallurgical point of view, the choice of alloying elements and the metallurgical process can greatly influence the resulting microstructure. Conclusion. This review reports the most representative study regarding thermomechanical rolling technologies and microstructural factors in well casing steels. It includes a summary of the most important process variables, material properties, regulatory guidelines, and microstructural and mechanical properties of the metal for well casing production. This review is intended to benefit readers from a variety of backgrounds, from non-metal forming or materials scientists to various industrial application specialists and researchers.

About the authors

K. A. Baraboshkin

Email: ka.baraboshkin@severstal.com
ORCID iD: 0009-0004-9054-3523
JSC "Severstal Management", 30 Mira str., Cherepovets, 162608, Russian Federation, ka.baraboshkin@severstal.com

R. R. Adigamov

Email: rradigamov@severstal.com
ORCID iD: 0009-0006-7620-5872
Ph.D. (Engineering), JSC "Severstal Management", 30 Mira str., Cherepovets, 162608, Russian Federation, rradigamov@severstal.com

V. S. Yusupov

Email: vsyusupov@mail.ru
ORCID iD: 0000-0002-0640-2217
D.Sc. (Engineering), JSC "Severstal Management", 30 Mira str., Cherepovets, 162608, Russian Federation, vsyusupov@mail.ru

I. A. Kozhevnikova

Email: iakozhevnikova@chsu.ru
ORCID iD: 0000-0003-0810-2143
D.Sc. (Engineering), Associate Professor, Cherepovets State University, 5 Lunacharsky pr., Cherepovets, Vologda region, 162600, Russian Federation, iakozhevnikova@chsu.ru

A. I. Karlina

Email: ai.karlina@severstal.com
ORCID iD: 0000-0003-3287-3298
Ph.D. (Engineering), JSC "Severstal Management", 30 Mira str., Cherepovets, 162608, Russian Federation, ai.karlina@severstal.com

References

  1. Эфрон Л.И. Металловедение в «большой» металлургии. Трубные стали. – М.: Металлургиздат, 2012. – 696 с. – ISBN 978-5-902194-63-7.
  2. Матросов Ю.И., Литвиненко С.А., Голованенко С.А. Сталь для магистральных трубопроводов. – М.: Металлургия, 1989. – 288 с.
  3. Технологии производства стальных бесшовных труб для добычи трудноизвлекаемых углеводородов / А.Г. Ширяев, С.Г. Четвериков, С.Г. Чикалов, И.Ю. Пышминцев, П.В. Крылов // Известия высших учебных заведений. Черная металлургия. – 2018. – Т. 61 (11). – С. 866–875. – doi: 10.17073/0368-0797-2018-11-866-875.
  4. API Spec 5CT. Обсадные и насосно-компрессорные трубы. Технические условия. – 9-е изд. – Американский нефтяной институт, 2011. – 287 с.
  5. ISO 11960. Нефтяная и газовая промышленность – трубы стальные, применяемые в качестве обсадных или насосно-компрессорных труб для скважин. – 4-е изд. – Международная организация по стандартизации, 2011. – 269 с.
  6. DSTU ISO 11960:2020. Petroleum and natural gas industries – Steel pipes for use as casing and tubing for wells. – Geneva, Switzerland: IOS, 2020.
  7. ГОСТ Р 53366–2009. Трубы стальные, применяемые в качестве обсадных или насосно-компрессорных труб для скважин в нефтяной и газовой промышленности. Общие технические условия. – М.: Стандартинформ, 2010. – 190 с.
  8. СТО Газпром 2-4.1-158–2007. Технические требования к обсадным трубам для месторождений ОАО «Газпром». – М.: ОАО «Газпром», 2007. – 23 с.
  9. СТО Газпром 2-4.1-228–2008. Технические требования к насосно-компрессорным трубам для месторождений ОАО «Газпром». – М.: ОАО «Газпром», 2008. – 32 с.
  10. Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation / R.J. Davies, S. Almond, R.S. Ward, R.B. Jackson, C. Adams, F. Worrall, L.G. Herringshaw, J.G. Gluyas, M.A. Whitehead // Marine and Petroleum Geology. – 2014. – Vol. 56. – P. 239–254. – doi: 10.1016/j.marpetgeo.2014.03.001.
  11. Microstructure evolution of the semi-macro segregation induced banded structure in high strength oil tubes during quenching and tempering treatments / B. Li, M. Luo, Z. Yang, F. Yang, H. Liu, H. Tang, Z. Zhang, J. Zhang // Materials. – 2019. – Vol. 12 (20). – P. 3310. – doi: 10.3390/ma12203310.
  12. Effects of Q&T parameters on phase transformation, microstructure, precipitation and mechanical properties in an oil casing steel / Q. Zhang, Q. Yuan, Z. Xiong, M. Liu, G. Xu // Physics of Metals and Metallography. – 2021. – Vol. 122 (14). – P. 1463–1472. – doi: 10.1134/S0031918X21140180.
  13. Ниобийсодержащие низколегированные стали / Ф. Хайстеркамп, К. Хулка, Ю.И. Матросов, Ю.Д. Морозов, Л.И. Эфрон, В.И. Столяров, О.Н. Чевская. – М.: Интермет Инжиниринг, 1999. – 94 с.
  14. Baker T.N. Microalloyed steels // Ironmaking & Steelmaking. – 2016. – Vol. 43 (4). – P. 264–307. – doi: 10.1179/1743281215Y.0000000063.
  15. Baker T.N. Titanium microalloyed steels // Ironmaking & Steelmaking. – 2019. – Vol. 46 (1). – P. 1–55. – doi: 10.1080/03019233.2018.1446496.
  16. Pickering F.B. Overview of titanium microalloyed steels // Titanium technology in microalloyed steels / ed. by T.N. Baker. – London: The Institute of Materials, 1997. – P. 10–43.
  17. Takahashi M. Sheet steel technology for the last 100 years: Progress in sheet steels in hand with the automotive industry // Tetsu To Hagane. – 2014. – Vol. 100 (1). – P. 82–93. – doi: 10.2355/tetsutohagane.100.82.
  18. Latest developments in mechanical properties and metallurgical features of high strength line pipe steels / D. Belato Rosado, W. De Waele, D. Vanderschueren, S. Hertelé // International Journal of Sustainable Construction and Design. – 2013. – Vol. 4 (1). – doi: 10.21825/scad.v4i1.742.
  19. Joo M.S., Suh D.W., Bhadeshia H.K.D.H. Mechanical anisotropy in steels for pipelines // ISIJ International. – 2013. – Vol. 53 (8). – P. 1305–1314. – doi: 10.2355/isijinternational.53.1305.
  20. Microstructure and mechanical properties of two API steels for iron ore pipelines / L.B. Godefroid, L.C. Candido, R.B. Toffolo, L.H. Barbosa // Materials Research. – 2014. – Vol. 17 (suppl 1). – P. 114–120. – doi: 10.1590/S1516-14392014005000068.
  21. Tanaka T. Controlled rolling of steel plate and strip // International Metals Reviews. – 1981. – Vol. 26 (1). – P. 185–212. – doi: 10.1179/imr.1981.26.1.185.
  22. Relation among rolling parameters, microstructures and mechanical properties in an acicular ferrite pipeline steel / W. Wang, W. Yan, L. Zhu, P. Hu, Y. Shan, K. Yang // Materials & Design. – 2009. – Vol. 30 (9). – P. 3436–3443. – doi: 10.1016/j.matdes.2009.03.026.
  23. Influences of austenization temperature and annealing time on duplex ultrafine microstructure and mechanical properties of medium Mn steel / C. Wang, W.Q. Cao, Y. Han, C.Y. Wang, C.X. Huang, H. Dong // Journal of Iron and Steel Research International. – 2015. – Vol. 22 (1). – P. 42–47. – doi: 10.1016/S1006-706X(15)60007-3.
  24. Kim N.J., Thomas G. Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1C steel // Metallurgical Transactions A. – 1981. – Vol. 12. – P. 483–489. – doi: 10.1007/BF02648546.
  25. Liang X. The complex phase transformation of austenite in high strength linepipe steels and its influence on the mechanical properties: diss. – University of Pittsburgh, 2012.
  26. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels / Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim // ISIJ International. – 2002. – Vol. 42 (12). – P. 1571–1577. – doi: 10.2355/isijinternational.42.1571.
  27. Separation phenomenon occurring during the Charpy impact test of API X80 pipeline steels / S.Y. Shin, S. Hong, J.-H. Bae, K. Kim, S. Lee // Metallurgical and Materials Transactions A. – 2009. – Vol. 40. – P. 2333–2349. – doi: 10.1007/s11661-009-9943-9.
  28. Relationships among crystallographic texture, fracture behavior and Charpy impact toughness in API X100 pipeline steel / X.-L. Yang, Y.-B. Xu, X.-D. Tan, D. Wu // Materials Science and Engineering: A. – 2015. – Vol. 641. – P. 96–106. – doi: 10.1016/j.msea.2015.06.029.
  29. Microstructure of high strength niobium-containing pipeline steel / S. Shanmugam, R.D.K. Misra, J. Hartmann, S. Jansto // Materials Science and Engineering: A. – 2006. – Vol. 441 (1–2). – P. 215–229. – doi: 10.1016/j.msea.2006.08.017.
  30. Effects of microstructure and pipe forming strain on yield strength before and after spiral pipe forming of API X70 and X80 linepipe steel sheets / S.S. Sohn, S.Y. Han, J.H. Bae, H.S. Kim, S. Lee // Materials Science and Engineering: A. – 2013. – Vol. 573. – P. 18–26. – doi: 10.1016/j.msea.2013.02.050.
  31. Effects of microstructure and yield ratio on strain hardening and Bauschinger effect in two API X80 linepipe steels / S.Y. Han, S.S. Sohn, S. Shin, J.H. Bae, H.S. Kim, S. Lee // Materials Science and Engineering: A. – 2012. – Vol. 551. – P. 192–199. – doi: 10.1016/j.msea.2012.05.007.
  32. High-strength steel development for pipelines: a Brazilian perspective. / I.S. Bott, L.F.G. De Souza, J.C.G. Teixeira, P.R. Rios // Metallurgical and Materials Transactions A. – 2005. – Vol. 36. – P. 443–454. – doi: 10.1007/s11661-005-0315-9.
  33. Improvement of mechanical properties of heavy plates for high strength linepipe application i.e. in Arctic Regions / F. Grimpe, H. Meuser, F. Gerdemann, E. Muthmann // 2nd International Conference on Super-High Strength Steels, Garda, Italy, 17–20 October 2010. – Associazione Italiana di Metallurgia (AIM), 2010. – P. 1–13.
  34. Challenges to a pipe manufacturer driven by worldwide pipe projects / H.-G. Hillenbrand, C. Kalwa, J. Schröder, C. Kassel // 18th Joint Technical Meeting on Pipeline Research. – 2011. – Vol. 13. – P. 1–12.
  35. Nonn A., Kalwa C. Modelling of damage behaviour of high strength pipeline stell // 18th European Conference on Fracture. – Dresden, 2010. – P. 1–8.
  36. Пейганович Н.В. Выпуск нефтегазопроводных труб с повышенной эксплуатационной надежностью // Металлург. – 2007. – № 12. – С. 51–55.
  37. Шабалов И.П., Морозов Ю.Д., Эфрон Л.И. Стали для труб и строительных конструкций с повышенными эксплуатационными свойствами. – М.: Металлургиздат, 2003. – 520 с.
  38. Ментюков К.Ю. Влияние термомеханической обработки при производстве проката и трубного передела на структуру и механические свойства низколегированных сталей для труб большого диаметра: дис. ... канд. техн. наук: 05.16.01. – М., 2017. – 122 с.
  39. A review on casing while drilling technology for oil and gas production with well control model and economical analysis / D. Patel, V. Thakar, S. Pandian, M. Shah, A. Sircar // Petroleum. – 2019. – Vol. 5 (1). – P. 1–12. – doi: 10.1016/j.petlm.2018.12.003.
  40. Using casing to drill directional wells / K.R. Fontenot, B. Lesso, R.D. Strickler, T. Warren // Oilfield Review. – 2005. – Vol. 17 (2). – P. 44–61.
  41. Simultaneous drill and case technology-case histories, status and options for further development / D. Hahn, W. Van Gestel, N. Fröhlich, G. Stewart // IADC/SPE Drilling Conference, New Orleans, Louisiana, February 2000. – doi: 10.2118/59126-MS.
  42. Radwan A., Karimi M. Feasibility study of casing drilling application in hpht environments: A review of challenges, benefits, and limitations // SPE/IADC Middle East Drilling Technology Conference and Exhibition, Muscat, Oman, October 2011. – doi: 10.2118/148433-MS.
  43. Verhoeven J.D. A review of microsegregation induced banding phenomena in steels // Journal of Materials Engineering and Performance. – 2000. – Vol. 9 (3). – P. 286–296. – doi: 10.1361/105994900770345935.
  44. Morrison W.B. Microalloy steels – the beginning // Materials Science and Technology. – 2009. – Vol. 25 (9). – P. 1066–1073. – doi: 10.1179/174328409X453299.
  45. Morrison W.B. Influence of small niobium additions on properties of carbon-manganese steels // Journal of the Iron and Steel Institute. – 1963. – Vol. 201 (4). – P. 317–325.
  46. Quantitative analysis of mixed niobium-titanium carbonitride solubility in HSLA steels based on atom probe tomography and electrical resistivity measurements. / J. Webel, H. Mohrbacher, E. Detemple, D. Britz, F. Mücklich // Journal of Materials Research and Technology. – 2022. – Vol. 18. – P. 2048–2063. – doi: 10.1016/j.jmrt.2022.03.098.
  47. Tracing microalloy precipitation in Nb-Ti HSLA steel during austenite conditioning / J. Webel, A. Herges, D. Britz, E. Detemple, V. Flaxa, H. Mohrbacher, F. Mücklich // Metals. – 2020. – Vol. 10. – P. 243. – doi: 10.3390/met10020243.
  48. Cuddy L.J. The effect of microalloy concentration on the recrystallization of austenite during hot deformation // Thermomechanical Processing of Microalloyed Austenite, Warrendale, PA: The Metallurgical Society / AIME, 1982. – P.129–140. – ISBN 0-89520-398-7.
  49. On strength of microalloyed steels: an interpretive review / A.J. DeArdo, M.J. Hua, K.G. Cho, C.I. Garcia // Materials Science and Technology. – 2009. – Vol. 25 (9). – P. 1074–1082. – doi: 10.1179/174328409X455233.
  50. Modern HSLA steels and role of non-recrystallisation temperature / S. Vervynckt, K. Verbeken, B. Lopez, J.J. Jonas // International Materials Reviews. – 2012. – Vol. 57 (4). – P. 187–207. – doi: 10.1179/1743280411y.0000000013.
  51. DeArdo A.J. Niobium in modern steels // International Materials Reviews. – 2003. – Vol. 48 (6). – P. 371–402. – doi: 10.1179/095066003225008833.
  52. Gladman T. The physical metallurgy of microalloyed steels. – Institute of Materials, 1997. – 363 p. – (Book / the Institute of Materials; vol. 615). – ISBN 0901716812.
  53. Strengthening from Nb-rich clusters in a Nb-microalloyed steel / K.Y. Xie, T. Zheng, J.M. Cairney, H. Kaul, J.G. Williams, F. Barbaro, C.R. Killmore, S.P. Ringer // Scripta Materialia. – 2012. – Vol. 66 (9). – P. 710–713. – doi: 10.1016/j.scriptamat.2012.01.029.
  54. Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties / R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, A. Charai // Acta Materialia. – 1999. – Vol. 47 (12). – P. 3475–3481. – doi: 10.1016/S1359-6454(99)00190-1.
  55. Zhang L., Kannengiesser T. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel // Materials Science and Engineering: A. – 2014. – Vol. 613. – P. 326–335. – doi: 10.1016/j.msea.2014.06.106.
  56. Non-isothermal prior austenite grain growth of a high-Nb X100 pipeline steel during a simulated welding heat cycle process / Y. Gu, P. Tian, X. Wang, X.-l. Han, B. Liao, F.-r. Xiao // Materials and Design. – 2016. – Vol. 89. – P. 589–596. – DOI: 101016/jmatdes201509039.
  57. Development of high HAZ toughness steel plates for box columns with high heat input welding / A. Kojima, K.-I. Yoshii, T. Hada, O. Saeki, K. Ichikawa, Y. Yoshida, Y. Shimura, K. Azuma // Nippon Steel Technical Report. – 2004. – N 90. – P. 39–44.
  58. Effect of dissolution and precipitation of Nb on the formation of acicular ferrite/bainite ferrite in low-carbon HSLA steels / Y. Chen, D. Zhang, Y. Liu, H. Li, D. Xu // Materials Characterization. – 2013. – Vol. 84. – P. 232–239. – doi: 10.1016/j.matchar.2013.08.005.
  59. Karjalainen L.P., Maccagno T.M., Jonas J.J. Softening and flow stress behaviour of Nb microalloyed steels during hot rolling simulation // ISIJ International. – 1995. – Vol. 35 (12). – P. 1523–1531. – doi: 10.2355/isijinternational.35.1523.
  60. Hansen S.S., Sande J.B.V., Cohen M. Niobium carbonitride precipitation and austenite recrystallization in hot-rolled microalloyed steels // Metallurgical Transactions A. – 1980. – Vol. 11. – P. 387–402. – doi: 10.1007/BF02654563.
  61. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel / J. Hu, L.X. Du, H. Xie, X.H. Gao, R.D.K. Misra // Materials Science and Engineering: A. – 2014. – Vol. 607. – P. 122–131. – doi: 10.1016/j.msea.2014.03.133.
  62. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling / J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, R.D.K. Misra // Materials Science and Engineering: A. – 2013. – Vol. 585. – P. 197–204. – doi: 10.1016/j.msea.2013.07.071.
  63. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C–Mn steel / J. Byun, J. Shim, Y.W. Cho, D.N. Lee // Acta Materialia. – 2003. – Vol. 51 (6). – P. 1593–1606. – doi: 10.1016/S1359-6454(02)00560-8.
  64. Crystallography of intragranular ferrite formed on (MnS + V(C, N)) complex precipitate in austenite / G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki, R. Uemori // Scripta Materialia. – 2003. – Vol. 48 (4). – P. 371–377. – doi: 10.1016/S1359-6462(02)00451-7.
  65. Effect of V and N precipitation on acicular ferrite formation in sulfur-lean vanadium steels / C. Capdevila, C. García-Mateo, J. Chao, F.G. Caballero // Metallurgical and Materials Transactions A. – 2009. – Vol. 40 (3). – P. 522–538. – doi: 10.1007/s11661-008-9730-z.
  66. Babu S.S., Bhadeshia H.K.D.H. Mechanism of the transition from bainite to acicular ferrite // Materials Transactions, JIM. – 1991. – Vol. 32 (8). – P. 679–688. – doi: 10.2320/matertrans1989.32.679.
  67. Acicular ferrite formation in a medium carbon steel with a two stage continuous cooling / I. Madariaga, I. Gutiérrez, C. Garc??a-de Andrés, C. Capdevila // Scripta Materialia. – 1999. – Vol. 41 (3). – P. 229–235. – doi: 10.1016/S1359-6462(99)00149-9.
  68. Aminorroaya Yamini S. Influence of microalloying elements (Ti, Nb) and nitrogen concentrations on precipitation of pipeline steels – A thermodynamic approach // Engineering Reports. – 2021. – Vol. 3 (7). – P. e12337. – doi: 10.1002/eng2.12337.
  69. Nature of large (Ti, Nb)(C, N) particles precipitated during the solidification of Ti, Nb HSLA steel / X. Zhuo, X. Wang, W. Wang, H.G. Lee // Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material. – 2007. – Vol. 14 (2). – P. 112–117. – doi: 10.1016/S1005-8850(07)60023-1.
  70. Den Boer A.W., Malakhov D.V. Critical role of carbon during production of ferroniobium alloy additions // Canadian Metallurgical Quarterly. – 2014. – Vol. 53 (4). – P. 423–431. – doi: 10.1179/1879139514Y.0000000134.
  71. The mechanism for coarse Nb-rich particle formation in steel / S. Abraham, R. Bodnar, J. Lonnqvist, J. Hagstrom, E. Rydgren // Metallurgical and Materials Transactions A. – 2021. – Vol. 52. – P. 3727–3749. – doi: 10.1007/s11661-021-06324-3.
  72. Microstructural features controlling mechanical properties in Nb-Mo microalloyed steels. Part I: Yield strength / P. Uranga, N. Isasti, D. Jorge-Badiola, M.L. Taheri // Metallurgical and Materials Transactions A. – 2014. – Vol. 45. – P. 4960–4971. – doi: 10.1007/s11661-014-2450-7.
  73. Sn segregation at grain boundary and interface between MnS and matrix in Fe-3 mass% Si alloys doped with tin / S. Suzuki, K. Kuroki, H. Kobayashi, N. Takahasi // Materials Transactions, JIM. – 1992. – Vol. 33 (11). – P. 1068–1076. – doi: 10.2320/matertrans1989.33.1068.
  74. Tsunekage N., Tsubakino H. Effects of sulfur content and sulfide-forming elements addition on impact properties of ferrite-pearlitic microalloyed steels // ISIJ International. – 2001. – Vol. 41 (5). – P. 498–505. – doi: 10.2355/isijinternational.41.498.
  75. Phillips R., Chapman J.A. Influence of finish rolling temperature on mechanical properties of some commercial steels rolled to 13/16 in. diameter bars // Journal of the Iron and Steel Institute. – 1966. – Vol. 204. – P. 615–622.
  76. Optimization of metallurgical factors for production of high strength, high toughness steel plate by controlled rolling / M. Hiroyoshi, T. Osuka, I. Kozasu, K. Tsukada // Transactions of the Iron and Steel Institute of Japan. – 1972. – Vol. 12. – P. 435–443.
  77. Hall E.O. The deformation and ageing of mild steel: III discussion of results // Proceedings of the Physical Society. Section B. – 1951. – Vol. 64 (9). – P. 747. – doi: 10.1088/0370-1301/64/9/303.
  78. Petch N.J. The cleavage strength of polycrystals // Journal of the Iron and Steel Institute. – 1953. – Vol. 174. – P. 25–28.
  79. The plastic deformation of polycrystalline aggregates / R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch // The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. – 1962. – Vol. 7 (73). – P. 45–58. – doi: 10.1080/14786436208201857.
  80. Hoogendoorn T.M., Spanraft M.J. Quantifying the effect of microalloy elements on structures during processing // Proceedings. Microalloying ’;75 – Washington, 1975. – P. 75–89.
  81. Microalloyed steels through history until 2018: review of chemical composition, processing and hydrogen service / J.C. Villalobos, A. Del-Pozo, B. Campillo, J. Mayen, S. Serna // Metals. – 2018. – Vol. 8 (5). – P. 351. – doi: 10.3390/met8050351.
  82. Palmiere E.J., Garcia C.I., DeArdo A.J. Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium // Metallurgical and Materials Transactions A. – 1994. – Vol. 25. – P. 277–286. – doi: 10.1007/BF02647973.
  83. Gauthier G., LeBon A.B. Discussion: on the recrystallization of austenite // Proceedings. Microalloying ’;75. – Washington, 1975. – P. 1–3.
  84. Hot rolling as a High-Temperature Thermo-Mechanical Process / I. Kozasu, C. Ouchi, T. Sampei, T. Okita // Proceedings. Microalloying ’;75. – Washington, 1975. – P. 120–134.
  85. DeArdo A.J. Microalloyed steels: fifty years of progress – An interpretive review. – URL: https://www.researchgate.net/publication/304374754_Microalloyed_Steels_Fifty_Years_of_Progress_-_An_Interpretive_Review (accessed: 06.08.2024).
  86. The significance of central segregation of continuously cast billet on banded microstructure and mechanical properties of section steel / F. Guo, X. Wang, J. Wang, R.D.K. Misra, C. Shang // Metals. – 2020. – Vol. 10. – P. 76. – doi: 10.3390/met10010076.
  87. Stalheim D.G. The use of high temperature processing (HTP) steel for high strength oil and gas transmission pipeline applications // Iron & Steel. – 2005. – Vol. 40 (11). – P. 699–704.
  88. Misra D., Jansto S.G. Niobium-based alloy design for structural applications: processing-structure-property paradigm // HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015: conference proceedings. – Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. – P. 261–266. – doi: 10.1002/9781119223399.ch27.
  89. The effect of coiling temperature on the microstructure and mechanical properties of a niobium–titanium microalloyed steel processed via thin slab casting / V.S.A. Challa, W.H. Zhou, R.D.K. Misra, R. O'Malley, S.G. Jansto // Materials Science and Engineering: A. – 2014. – Vol. 595. – P. 143–153. – doi: 10.1016/j.msea.2013.12.002.
  90. Sarmento E.C., Evans J. Effect of strain accumulation and dynamic recrystallisation on the flow stress of HSLA steels during flat rolling // Proceedings of an International Symposium on Processing, Microstructure, and Properties of HSLA Steels 1992: ISS-AIME. – Warrendale, Pennsylvania, 1992. – P. 105–112.
  91. Yada H., Matsumura Y., Senuma T. A new thermomechanical heat treatment for grain refining in low carbon steels // Proceedings of the 1st International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals (THERMEC '88), Keidanren Kaikan, Tokyo, Japan. – Tokyo: ISIJ, 1988. – P. 200.
  92. The dynamic transformation of ferrite above Ae3 and the consequences on hot rolling of steels / F. Siciliano, S.F. Rodrigues, C. Aranas Jr , J.J. Jonas // Tecnologia em Metalurgia, Materiais e Mineração. – 2020. – Vol. 17 (2). – P. 90–95. – doi: 10.4322/2176-1523.20202230.
  93. Tamura I., Sekine H., Tanaka T. Thermomechanical processing of high-strength low-alloy steels. – Butterworth-Heinemann, 2013. – ISBN 0-408-11034-1.
  94. Thermal mechanisms of grain refinement in steels: A review / Z. Nasiri, S. Ghaemifar, M. Naghizadeh, H. Mirzadeh // Metals and Materials International. – 2021. – Vol. 27. – P. 2078–2094. – doi: 10.1007/s12540-020-00700-1.
  95. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions / T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas // Progress in Materials Science. – 2014. – Vol. 60. – P. 130–207. – doi: 10.1016/j.pmatsci.2013.09.002.
  96. Huang K.E., Logé R.E. A review of dynamic recrystallization phenomena in metallic materials // Materials & Design. – 2016. – Vol. 111 (8). – P. 548–574. – doi: 10.1016/j.matdes.2016.09.012.
  97. Sanz L., Pereda B., López B. Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb // Materials Science and Engineering: A. – 2017. – Vol. 685. – P. 377–390. – doi: 10.1016/j.msea.2017.01.014.
  98. Buchmayr B. Thermomechanical treatment of steels – A real disruptive technology since decades // Steel Research International. –2017. – Vol. 88 (10). – P. 1700182. – doi: 10.1002/srin.201700182.
  99. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides / Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda // ISIJ International. – 2004. – Vol. 44 (11). – P. 1945–1951. – doi: 10.2355/isijinternational.44.1945.
  100. Zaitsev A., Arutyunyan N. Low-carbon Ti-Mo microalloyed hot rolled steels: special features of the formation of the structural state and mechanical properties // Metals. – 2021. – Vol. 11 (10). – P. 1584. – doi: 10.3390/met11101584.
  101. Zhao J., Jiang Z. Thermomechanical processing of advanced high strength steels // Progress in Materials Science. – 2018. – Vol. 94. – P. 174–242. – doi: 10.1016/j.pmatsci.2018.01.006.
  102. Закономерности выделения карбида титана в малоуглеродистых высокопрочных сталях, микролегированных титаном и молибденом / Н.Г. Шапошников, А.В. Колдаев, А.И. Зайцев, И.Г. Родионова, Д.Л. Дьяконов, Н.А. Арутюнян // Металлург. – 2016. – № 8. – С. 49–54.
  103. Numerical simulation of temperature field in steel under action of electron beam heating Source / V.Yu. Skeeba, V.V. Ivancivsky, N.V. Martyushev, D.V. Lobanov, N.V. Vakhrushev, A.K. Zhigulev // Key Engineering Materials. – 2016. – Vol. 712. – P. 105–111. – doi: 10.4028/ href='www.scientific.net/KEM.712.105' target='_blank'>www.scientific.net/KEM.712.105.
  104. Adigamov R.R., Baraboshkin K.A., Yusupov V.S. Study of the phase transition kinetics in the experimental melting of rolled coils of K55 grade strength steel for pipes manufacturing // Steel in Translation. – 2022. – Vol. 52 (11). – P. 1098–1105. – doi: 10.3103/S096709122211002X.
  105. Development of rolling procedures for pipes of K55 strength class at the laboratorial mill / R.R. Adigamov, K.A. Baraboshkin, P.A. Mishnev, A.I. Karlina // CIS Iron and Steel Review. – 2022. – Vol. 24. – P. 60–66. – doi: 10.17580/cisisr.2022.02.09.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».