Modeling and optimization of roller burnishing of Al6061-T6 process for minimum surface roughness, better microhardness and roundness

Cover Page

Cite item

Full Text

Abstract

Introduction. Roller burnishing is one of the most common methods of improving the surface quality of parts, wear resistance, microhardness, and corrosion resistance. The process involves compressing and smoothing the workpiece using the pressure of a hardened roller. It is often used to improve part performance and lifespan in sectors including automotive, aerospace, and medical equipment manufacturing. The literature reviewed shows that the roller burnishing process effectively improves the overall surface quality and hardness of the workpiece. In addition, roller burnishing is considered as an affordable method to enhance the functionality and robustness of machined parts by reducing the likelihood of surface defects such as like scratches and cracks. However, very few studies have been reported on the modeling and optimization of roller burnishing of Al6061-T6 for minimum surface roughness, better microhardness, and roundness. The methods of investigation. In the current work, roller burnishing of Al6061-T6 is modeled and optimized for superior microhardness, roundness, and minimal surface roughness. Under dry-cutting conditions, the performance of roller burnishing of Al6061 specimens is assessed in terms of process factors such as cutting speed, feed, and number of passes. Mathematical models to predict the surface roughness, microhardness, and deviation in roundness are developed based on the experimental results. Results and Discussion. The coefficient of correlation for the developed models is found to be close to 0.9, which indicates that it can be reliably used to predict and optimize the roller burnishing of the Al6061-T6. According to this study, the use of the following cutting parameters leads to the lowest variation in roundness (4.282 µm), the better microhardness (119.2 Hv), and the lowest surface roughness (0.802 µm): cutting speed 344 rpm, feed 0.25 mm/rpm and four passes. Further, the study reveals that increasing the number of passes (beyond four) does not significantly improve the surface roughness or microhardness. However, it does lead to a slight increase in the roundness deviation. Therefore, in order to achieve optimal results, it is recommended to use a maximum of four passes during roller burnishing of Al6061 specimens under dry cutting conditions. These results imply that roller burnishing can effectively improve the overall quality and hardness of the workpiece surface. In addition, roller burnishing is considered as an affordable method to increase the functionality and robustness of machined parts by reducing the likelihood of surface defects like scratches and cracks.

About the authors

R. Dwivedi

Email: rashmidwivedi29@gmail.com
ORCID iD: 0000-0002-9755-5330
D.Sc. (Engineering), Professor, Mechanical Engineering Department, Sri Satya Sai University of Technology & Medical Science, Sehore, Madhya Pradesh, 466001, India, rashmidwivedi29@gmail.com

A. Somatkar

Email: avinash.somatkar@viit.ac.in
ORCID iD: 0000-0002-2885-2104
Ph.D. (Engineering), Professor, 1. Mechanical Engineering Department, Sri Satya Sai University of Technology & Medical Science, Sehore, Madhya Pradesh, 466001, India; 2. Department of Mechanical Engineering, Vishwakarma Institute of Information Technology, Pune, 411048, India; avinash.somatkar@viit.ac.in

S. Chinchanikar

Email: satish.chinchanikar@viit.ac.in
ORCID iD: 0000-0002-4175-3098
D.Sc. (Engineering), Professor, Department of Mechanical Engineering, Vishwakarma Institute of Information Technology, Pune, 411048, India, satish.chinchanikar@viit.ac.in

References

  1. El-Axir M.H. An investigation into the ball burnishing of aluminum alloy 6061-T6 // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2007. – Vol. 221 (12). – P. 1733–1742. – doi: 10.1243/09544054JEM818.
  2. Klocke F., Liermann J. Roller burnishing of hard turned surfaces // International Journal of Machine Tools and Manufacture. – 1998. – Vol. 38. – P. 419–423. – doi: 10.1016/S0890-6955(97)00085-0.
  3. Murthy R.L., Kotiveerachari B. Burnishing of metallic surfaces – a review // Precision Engineering. – 1981. – Vol. 3. – P. 172–179. – doi: 10.1016/01416359(81)90010-6.
  4. Korzynski M. Modeling and experimental validation of the force–surface roughness relation for smoothing burnishing with a spherical tool // International Journal of Machine Tools and Manufacture. – 2007. – Vol. 47. – P. 1956–1964. – doi: 10.1016/j.ijmachtools.2007.03.002.
  5. Characteristics of Rb40 steel superficial layer under the ball and roller burnishing / H. Hamadache, L. Laouar, N.E. Zeghib, K. Chaoui // Journal of Materials Processing Technology. – 2006. – Vol. 180 (1–3). – P. 130–136. – doi: 10.1016/j.jmatprotec.2006.05.013.
  6. Investigation of the burnishing force during the burnishing process with a cylindrical surfaced tool / H. Luo, J. Liu, L. Wang, Q. Zhong // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2006. – Vol. 220. – P. 893–904. – doi: 10.1243/09544054B07604.
  7. Ebeid S.J., Ei-Taweel T.A. Surface improvement through hybridization of electrochemical turning and roller burnishing based on the Taguchi technique // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2005. – Vol. 219 (5). – P. 423–430. – doi: 10.1243/095440505X3228.
  8. The effect of burnishing parameters on burnishing force and surface microhardness / H. Luo, J. Liu, L. Wang, Q. Zhong // International Journal of Advanced Manufacturing Technology. – 2006. – Vol. 28. – P. 707–713. – doi: 10.1007/s00170-004-2412-0.
  9. Development and burnishing characteristics of roller burnishing method with rolling and sliding effects / M. Okada, S. Suenobu, K. Watanabe, Y. Yamashita, N. Asakawa // Mechatronics. – 2015. – Vol. 29. – P. 110–118. – doi: 10.1016/j.mechatronics.2014.11.002.
  10. Sundararajan P.N., Nagarajan N. Study of internal roller burnishing operation on En8 material // International Journal of Research and Innovation in Engineering Technology. – 2015. – Vol. 1 (12). – P. 10–12.
  11. Experimental investigation of the effect of roller burnishing process parameters on surface roughness and surface hardness of C40E steel / N. Kumar, A. Sachdeva, L.P. Singh, H. Tripathi // International Journal of Machining and Machinability of Materials. – 2016. – Vol. 18. – P. 185–99. – doi: 10.1504/IJMMM.2016.075470.
  12. Przybylski W. Integrated production technology of cylindrical surfaces by turning and burnishing // Advances in Manufacturing Science and Technology. – 2016. – Vol. 40 (3). – doi: 10.2478/amst-2016-0014.
  13. Shirsat U., Ahuja B., Dhuttargaon M. Effect of burnishing parameters on surface finish // Journal of The Institution of Engineers (India): Series C. – 2017. – Vol. 98. – P. 431–436. – doi: 10.1007/s40032-016-0320-3.
  14. Effect of roller burnishing process parameters on the surface roughness and microhardness for TA2 alloy / X.L. Yuan, Y.W. Sun, L.S. Gao, S.L. Jiang // International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 85. – P. 1373–1383. doi: 10.1007/s00170-015-8031-0.
  15. Bourebia M., Laouar L.H., Dominiak S. Improvement of surface finish by ball burnishing: approach by fractal dimension // Surface Engineering. – 2017. – Vol.  3. – P. 255–262. – doi: 10.1080/02670844.2016.1232778.
  16. Luca L., Neagu-Ventzel S., Marinescu I. Effects of working parameters on surface finish in ball-burnishing of hardened steels // Precision Engineering. – 2005. – Vol. 29. – P. 253–256. – doi: 10.1016/j.precisioneng.2004.02.002.
  17. Cobanoglu T., Ozturk S. Effect of burnishing parameters on the surface quality and hardness // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2015. – Vol. 229. – P. 286–294. – doi: 10.1177/0954405414527962.
  18. An investigation of the mechanics of roller burnishing through finite element simulation and experiments / P. Balland, L. Tabourot, F. Degre, V. Moreau // International Journal of Machine Tools and Manufacture. – 2013. – Vol. 65. – P. 29–36. – doi: 10.1016/j.ijmachtools.2012.09.002.
  19. Ball burnishing application for finishing sculptured surfaces in multi-axis machines / A. Rodríguez, L.N. López de Lacalle, A. Celaya, A. Fernández, A. Lamikiz // International Journal of Mechatronics and Manufacturing Systems. – 2011. – Vol. 4. – P. 220–237. – doi: 10.1504/IJMMS.2011.041470.
  20. Чинчаникар С., Гейдж М.Г. Моделирование рабочих характеристик и мультикритериальная оптимизация при токарной обработке нержавеющей стали AISI 304 (12Х18Н10Т) резцами с износостойким покрытием и с износостойким покрытием, подвергнутым микропескоструйной обработке // Обработка металлов (технология, оборудование, инструменты). – 2023. – Т. 25, № 4. – С. 117–135. – doi: 10.17212/1994-6309-2023-25.4-117-135.
  21. Chinchanikar S., Choudhury S.K. Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: an optimization approach // Measurement. – 2013. – Vol. 46 (4). – P. 1572–1584. – doi: 10.1016/j.measurement.2012.11.032.
  22. Gaikwad V.S., Chinchanikar S. Mechanical behaviour of friction stir welded AA7075-T651 joints considering the effect of tool geometry and process parameters // Advances in Materials and Processing Technologies. – 2022. – Vol. 8 (4). – P. 3730–3748. – doi: 10.1080/2374068X.2021.1976554.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».