Structural features and tribological properties of multilayer high-temperature plasma coatings

Cover Page

Cite item

Full Text

Abstract

Introduction. Multilayer high-temperature coatings obtained using plasma spraying, are studied. The combination of layers of different chemical and phase compositions made it possible to increase wear resistance by 1.5–2.0 times. The purpose of this work is to study the influence of the chemical composition of sprayed coatings on the phase composition, structure, micromechanical and tribological characteristics under conditions of dry sliding friction of surface layers. Materials and methods of research. Coatings A and B consist of sequentially sprayed layers. The first and second layers were sprayed in a reducing atmosphere: the first layer was a heat-resistant self-fluxing powder of two systems: 1Fe-Cr-Si-Mn-B-C for coating A and 2 – Fe-Ni-Si-Mn-B-C for coating B; the second layer was a mixture of self-fluxing powder with iron powder in a 1:1 ratio. The third layer was obtained by spraying iron powder in an oxidizing atmosphere to form a metal oxide coating. To create a layer of scale on the surface, coated specimens were subjected to high-temperature annealing at a temperature of 1,000 ?. The chemical composition and nature of the distribution of elements over the thickness of the coatings were determined by micro-X-ray spectral analysis using a TWSCAN scanning electron microscope with an Oxford energy-dispersive attachment. Microhardness and micromechanical properties were studied using an instrumental microhardness tester of the Fischerscope HM2000 XYm system at a load of 0.980 N. Determination of tribological properties was carried out on a laboratory installation using the “finger-disc” scheme at loads of 30, 75, 100 and 130 N. To measure roughness parameters and obtain 3-D profilometry of surfaces after testing, a non-contact profilometer-profiler Optical profiling system Veeco WYKO NT 1100 was used. Results and discussion. Metallographic studies have shown that the formed multilayer coatings consist of an internal metal layer and an external oxide layer with a total thickness of the entire coating up to 800–850 μm. It is established that the first sprayed layer has the highest level of microhardness, which is due to the high-volume fraction of the strengthening phases contained in it (~ 95 %). It is shown that the coating A has increased wear resistance, which is expressed by minimal weight loss (~ 1.5 times less than that of the coating of the coatimg B), the friction coefficient was f = 0.3 for coating A and f = 0.4 for coating B. The study of wear surfaces has shown that for all selected test loads under sliding friction conditions, the coating of both compositions was preserved, even at a maximum load of 130 N.

About the authors

N. B. Pugacheva

Email: nata5-4@yandex.ru
ORCID iD: 0000-0001-8015-8120
D.Sc. (Engineering), Associate Professor, 1. Institute of Engineering Science Ural Branch, Russian Academy of Sciences, 34 Komsomolskaya str., Yekaterinburg, 620049, Russian Federation; 2. Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg, 620002, Russian Federation, nata5-4@yandex.ru

T. M. Bykova

Email: tatiana_8801@mail.ru
ORCID iD: 0000-0002-8888-6410
Ph.D. (Engineering), 1. Institute of Engineering Science Ural Branch, Russian Academy of Sciences, 34 Komsomolskaya str., Yekaterinburg, 620049, Russian Federation; 2. Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg, 620002, Russian Federation, tatiana_8801@mail.ru

V. A. Sirosh

Email: sirosh.imp@yandex.ru
ORCID iD: 0000-0002-8180-9543
Ph.D. (Physics and Mathematics), M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 18 S. Kovalevskoy str., Ekaterinburg, 620108, Russian Federation, sirosh.imp@yandex.ru

A. V. Makarov

Email: av-mak@yandex.ru
ORCID iD: 0000-0002-2228-0643
D.Sc. (Engineering), M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 18 S. Kovalevskoy str., Ekaterinburg, 620108, Russian Federation, av-mak@yandex.ru

References

  1. Гузанов Б.Н., Косицын С.В., Пугачева Н.Б. Упрочняющие защитные покрытия в машиностроении. – Екатеринбург: УрО РАН, 2004. – 244 с. – ISBN 5-7691-1405-3.
  2. Serin K., Pehle H.J. Improved service life for hot forming tools in seamless tube plants // Stahl und Eisen. – 2014. – Vol. 134 (11). – P. 161–174.
  3. Sivakumar R., Mordike B.L. High temperature coatings for gas turbine blades: a review // Surface and Coatings Technology. – 1989. – Vol. 37 (2). – P. 139–160. – doi: 10.1016/0257-8972(89)90099-6.
  4. Подшивалкин С.А., Торбеев А.Н. Структура и свойства оксидированных покрытий // Master's Journal. – 2012. – № 2. – С. 91–98.
  5. Nanocrystalline structure of the surface layer of plasma-sprayed hydroxyapatite coatings obtained upon preliminary induction heat treatment of metal base / A.A. Fomin, A.B. Steinhauer, V.N. Lyasnikov, S.B. Wenig, A.M. Zakharevich // Technical Physics Letters. – 2012. – Vol. 38 (5). – P. 481–483. – doi: 10.1134/S1063785012050227.
  6. Сазоненко И.О., Земуов В.А., Юрчак А.Н. К вопросу повышения стойкости оправок прошивных станов // Литье и металлургия. – 2012. – № 4. – С. 135–138.
  7. Пухов Е.В., Загоруйко К.В. Результаты экспериментальных исследований износостойкости поверхности коленчатого вала, восстановленной методом газопламенного нанесения самофлюсующихся порошков // Международный технико-экономический журнал. – 2020. – № 4. – С. 45–52. – doi: 10.34286/1995-4646-2020-73-4-45-52.
  8. Манойло Е.Д., Радченко А.А., Шардаков С.Н. Непрерывное газопламенное нанесение покрытий из порошков самофлюсующихся сплавов на штанговые муфты нефтяных насосов // Порошковая металлургия: инженерия поверхности, новые порошковые композиционные материалы. Сварка: сборник докладов 13-го Международного симпозиума: в 2 ч. – Минск, 2023. – Ч. 2. – С. 171–186.
  9. Development of ion-plasma refractory metallic layers of heat-insulating coatings for cooled turbine rotor blades / S.А. Budinovsky, S.A. Muboyadzhyan, A.M. Gayamov, P.V. Matveev // Metal Science and Heat Treatment. – 2014. – Vol. 55. – P. 652–657. – doi: 10.1007/s11041-014-9684-2.
  10. Krivonosova E., Gorchakov A. Micro-arc oxidation as efficient technology of increasing of wear resistance of aluminum alloy // Elektrotechnica & Electronica E+E. – 2013. – Vol. 48 (5–6). – Р. 352–355.
  11. Iida S., Hidaka Y. Influence of iron oxide of carbon steel on lubricating properties in seamless pipe hot rolling and the effectiveness of borax application // Tetsu-to-Hagane / Journal of the Iron and Steel Institute of Japan. – 2010. – Vol. 96 (9). – Р. 550–556. – doi: 10.2355/tetsutohagane.96.550.
  12. Rodionov I.V. Application of the air-thermal oxidation technology for producing biocompatible oxide coatings on periosteal osteofixation devices from stainless steel // Inorganic Materials: Applied Research. – 2013. – Vol. 4 (2). – P. 119–126. – doi: 10.1134/S2075113313020159.
  13. Oxidation behavior and mechanism of porous nickel-based alloy between 850 and 1000 °C / Y. Wang, Y. Liu, H. Tang, W. Li, C. Han // Transactions of Nonferrous Metals Society of China. – 2017. – Vol. 27 (7). – P. 1558–1568. – doi: 10.1016/S1003-6326(17)60177-8.
  14. Марьин Д.М., Глущенко А.А., Салахутдинов И.Р. Снижение износа поршней двигателя внутреннего сгорания оксидированием рабочих поверхностей головок // Транспорт. Транспортные сооружения. Экология. – 2018. – № 2. – С. 71–79. – doi: 10.15593/24111678/2018.02.08.
  15. Герасимов Ю.Л., Авдеев С.В., Бобарикин Ю.Л. Исследование влияния особенностей оксидированного покрытия прошивных оправок на их эксплуатационную стойкость // Черные металлы. – 2017. – № 7. – С. 46–49.
  16. Oliver W.C., Pharr J.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments // Journal of Materials Research. – 1992. – Vol. 7 (6). – P. 1564–1583. – doi: 10.1557/JMR.1992.1564.
  17. Химический состав, структура и микротвердость многослойных высокотемпературных покрытий / Н.Б. Пугачева, Ю.В. Николин, Т.М. Быкова, Л.С. Горулева // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 4. – С. 138–150. – doi: 10.17212/1994-6309-2022-24.4-138-150.
  18. Cheng Y.T., Cheng C.M. Relationships between hardness, elastic modulus and the work of indentation // Applied Physics Letters. – 1998. – Vol. 73 (5). – P. 614–618. – doi: 10.1063/1.121873.
  19. Page T.F., Hainsworth S.V. Using nanoindentation techniques for the characterization of coated systems: a critique // Surface and Coatings Technology. – 1993. – Vol. 61 (1–3). – P. 201–208. – doi: 10.1016/0257-8972(93)90226-E.
  20. Гузанов Б.Н., Пугачева Н.Б., Быкова Т.М. Эрозионная стойкость комбинированного многослойного покрытия для защиты ответственных деталей современных газово-турбинных двигателей // Diagnostics, Resource and Mechanics of Materials and Structures. – 2021. – № 2. – С. 6–21. – doi: 10.17804/2410-9908.2021.2.006-021.
  21. Гузанов Б.Н., Обабков Н.В., Мигачева Г.Н. Разработка и исследование многослойных комбинированных покрытий высокотемпературного назначения // Sciences of Europe. – 2017. – № 16-1 (16). – С. 83–88.
  22. Sivakumar R., Mordike B.L. High temperature coatings for gas turbine blades: a review // Surface and Coatings Technology. – 1989. – Vol. 37 (2). – P. 139–160. – doi: 10.1016/0257-8972(89)90099-6.
  23. Повышение трибологических свойств аустенитной стали 12Х18Н10Т наноструктурирующей фрикционной обработкой / А.В. Макаров, П.А. Скорынина, А.Л. Осинцева, А.С. Юровских, Р.А. Саврай // Обработка металлов (технология, оборудование, инструменты). – 2015. – № 4 (69). – С. 80–92. – doi: 10.17212/1994-6309-2015-4-80-92.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».