The Effect of Ultrasonic Impact-Friction Treatment on a Surface Roughness of 09Mn2Si Structural Steel

Cover Page

Cite item

Full Text

Abstract

Introduction. Ultrasonic impact-frictional treatment (UIFT) is a new method of surface strain hardening that improves the properties and refines the microstructure of the surface layer of metallic material. Unlike traditional ultrasonic impact treatment (UIT), the UIFT applies impacts with ultrasonic frequency at an acute angle α to the metal surface in order to activate the shear deformation mode. Oxygen-free atmosphere of argon enhances friction and prevents embrittlement of the diffusion-active deformed layer. A decrease of the angle α during the UIFT leads to a shift of the metal displaced by the tool towards the impact. Therefore, the tool position, oscillating with an ultrasonic frequency, with respect to the tool trajectory may have a profound effect on the surface microrelief. Objective is studying the influence of the impact direction on the roughness and hardening degree of the 09Mn2Si structural steel surface regarding the tool cross-feed during UIFT at an angle α = 50º in the argon medium. Research Methods are following: microhardness measurements, atomic force microscopy (AFM), optical profilometry, optical microscopy and scanning electron microscopy with EBSD analysis. Results and discussion. After grinding, the steel surface microhardness is 200 HV0.1 and the arithmetic mean deviation of the surface profile is Ra= 0.6 μm. UIT at an angle α = 90º in an industrial oil medium results in the surface hardening up to 260 HV0.1, while the Ra parameter increases to 1.6 μm. UIFT with the impact vertical deviation towards the specimen cross-feed (forehand) provides a relatively uniform microrelief with Ra= 0.4 μm and the deformed layer microhardness of up to 500 HV0.1. The tool deviation in the contrary direction towards the specimen cross-feed (backhand) increases the surface hardening degree (620 HV0.1), but leads to the formation of an advanced microrelief consisting of shifted metal displaced by the tool, as well as to the Ra parameter increase up to 3.5 μm. At the same time, the submicrorelief roughness remains approximately at the same level (Ra= 0.03–0.04 μm) for all three hardening treatment methods. Thus, the angle and impact direction during ultrasonic hardening treatment are important technological parameters that allow long-range controlling of the surface microrelief with the UIFT applied as a finishing hardening treatment. UIFT is an effective method of surface hardening, intended to form a surface even with a lower roughness of the microprofile compared to that of a traditional grease-applied UIT.

About the authors

N. V. Lezhnin

Email: nlezhnin@bk.ru
Ph.D. (Engineering), M.N. Miheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 18 Sofia Kovalevskaya st., Yekaterinburg, 620219, Russian Federation, nlezhnin@bk.ru

A. V. Makarov

Email: avm@imp.uran.ru
D.Sc. (Engineering), M.N. Miheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 18 Sofia Kovalevskaya st., Yekaterinburg, 620219, Russian Federation, avm@imp.uran.ru

S. N. Luchko

Email: serojaluchko@gmail.com
M.N. Miheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 18 Sofia Kovalevskaya st., Yekaterinburg, 620219, Russian Federation, serojaluchko@gmail.com

B. A. Loginov

Email: b-loginov@mail.ru
National Research University of Electronic Technology - MIET, Bld. 1, Shokin Square, Zelenograd, Moscow, 124498, Russian Federation, b-loginov@mail.ru

A. B. Loginov

Email: loginov.ab15@physics.msu.ru
Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation, loginov.ab15@physics.msu.ru

References

  1. Advanced characterization methods for wear resistant hard coatings: a review on recent progress / M. Tkadletz, N. Schalk, R. Daniel, J. Keckes, C. Czettl, C. Mitterer // Surface & Coating Technology. – 2016. – Vol. 285. – P. 31–46. – doi: 10.1016/j.surfcoat.2015.11.016.
  2. Получение упрочняющих покрытий из аморфизируемых сплавов FE-CR-SI-B-C лазерно-плазменными методами / М.Н. Хомяков, П.А. Пинаев, П.А. Стаценко, И.Б. Мирошниченко, Г.Н. Грачев // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 4. – С. 21–34. – doi: 10.17212/1994-6309-2018-20.4-21-34.
  3. Corrosion resistance of low-carbon steel modified by plasma nitriding and diamond-like carbon / C.P. Fenili, F.S. de Souza, G. Marin, S.M.H. Probst, C. Binder, A.N. Klein // Diamond and Related Materials. – 2017. – Vol. 80. – P. 153–161. – doi: 10.1016/j.diamond.2017.11.001.
  4. Влияние низкотемпературной цементации в плазме электронного пучка на упрочнение и шероховатость поверхности метастабильной аустенитной стали / П.А. Скорынина, А.В. Макаров, А.И. Меньшаков, А.Л. Осинцева // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 2. – С. 97–109. – doi: 10.17212/1994-6309-2019-21.2-97-109.
  5. Блюменштейн В.Ю., Кукареко В.А. Структурные превращения в поверхностном слое при обработке мультирадиусным деформирующим инструментом // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 2. – С. 75–86. – doi: 10.17212/1994-6309-2018-20.2-75-86.
  6. Effect of shot peening using ultra-fine particles on fatigue properties of 5056 aluminum alloy under rotating bending / S. Kikuchi, Y. Nakamura, K. Nambu, M. Ando // Materials Science and Engineering: A. – 2016. – Vol. 652. – P. 279–286. – doi: 10.1016/j.msea.2015.11.076.
  7. Experimental study on macro- and microstress state, microstructural evolution of austenitic and ferritic steel processed by shot peening / M. Chen, C. Jiang, Z. Xu, K. Zhan, V. Ji // Surface & Coatings Technology. – 2019. – Vol. 359. – P. 511–519. – doi: 10.1016/j.surfcoat.2018.12.097.
  8. Lu K., Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment // Materials Science and Engineering: A. – 2004. – Vol. 375–377. – P. 38–45. – doi: 10.1016/j.msea.2003.10.261.
  9. Progress in mechanical properties of gradient structured metallic materials induced by surface mechanical attrition treatment / X. Yang, H. Pan, J. Zhang, H. Gao, B. Shu, Y. Gong, X. Zhu // Materials Transactions. – 2019. – Vol. 60, iss. 8. – P. 1543–1552. – doi: 10.2320/matertrans.MF201911.
  10. Microstructure and surface properties of 17-4PH stainless steel by ultrasonic surface rolling technology / Q. Zhang, Z. Hu, W. Su, H. Zhou, C. Liu, Y. Yang, X. Qi // Surface & Coatings Technology. – 2017. – Vol. 321. – P. 64–73. – doi: 10.1016/j.surfcoat.2017.04.052.
  11. Enhanced mechanical behaviors of gradient nano-grained austenite stainless steel by means of ultrasonic impact treatment / X. Yang, X. Wang, X. Ling, D. Wang // Results in Physics. – 2017. – Vol. 7. – P. 1412–1421. – doi: 10.1016/j.rinp.2017.04.002.
  12. The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension / A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Balokhonov, V.A. Romanova, O.B. Perevalova, Yu.I. Pochivalov // Materials & Design. – 2017. – Vol. 117, iss. 5. – P. 371–381. – doi: 10.1016/j.matdes.2017.01.006.
  13. Патент 2643289 Российская Федерация. Способ ультразвуковой упрочняющей обработки деталей / Макаров А.В., Малыгина И.Ю., Буров С.В., Саврай Р.А. – № 2016126583; заявл. 01.07.2016; опубл. 31.01.2018, Бюл. № 4. – 16 с.: ил.
  14. Nanostructuring and surface hardening of structural steels by ultrasonic impact-frictional treatment / A.V. Makarov, R.A. Savrai, I.Yu. Malygina, E.G. Volkova, S.V. Burov // AIP Conference Proceedings. – 2018. – Vol. 2053, iss. 1. – P. 020006-1–020006-5. – doi: 10.1063/1.5084352.
  15. Lezhnin N.V., Makarov A.V., Luchko S.N. The effect of ultrasonic impact-frictional treatment on the surface roughness and hardening of 09Mn2Si constructional steel // Letters on Materials. – 2019. – Vol. 9, iss. 3. – P. 310–315. – doi: 10.22226/2410-3535-2019-3-310-315.
  16. Influence of multiple ultrasonic impact treatments on surface roughness and wear performance of SUS301 steel / L. Li, M. Kim, S. Lee, M. Bae, D. Lee // Surface & Coatings Technology. – 2016. – Vol. 307. – P. 517–524. – doi: 10.1016/j.surfcoat.2016.09.023.
  17. Chamgordani S.A., Miresmaeili R., Aliofkhazraei M. Improvement in tribological behavior of commercial pure titanium (CP-Ti) by surface mechanical attrition treatment (SMAT) // Tribology International. – 2018. – Vol. 119. – P. 744–752. – doi: 10.1016/j.triboint.2017.11.044.
  18. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel / B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, M.O. Iefimov // Material Science and Engineering: A. – 2007. – Vol. 458. – P. 253–261. – doi: 10.1016/j.msea.2006.12.049.
  19. Influence of re-ultrasonic impact treatment on fatigue behaviors of S690QL welded joints / Y. Liu, D. Wang, C. Deng, L. Xia, L. Huo, L. Wang, B. Gong // International Journal of Fatigue. – 2014. – Vol. 66. – P. 155–160. – doi: 10.1016/j.ijfatigue.2014.03.024.
  20. Comparative study of the effects of surface mechanical attrition treatment and conventional shot peening on low cycle fatigue of a 316L stainless steel / J. Zhoua, D. Retrainta, Z. Suna, P. Kanouté // Surface & Coatings Technology. – 2018. – Vol. 349. – P. 556–566. – doi: 10.1016/j.surfcoat.2018.06.041.
  21. Kovalevskaya Zh.G., Uvarkin P.V., Tolmachev A.I. Some features of the formation of the surface microrelief of steel under ultrasonic finishing treatment // Russian Journal of Nondestructive Testing. – 2012. – Vol. 48, iss. 3. – P. 153–158. – doi: 10.1134/S1061830912030047.
  22. A two-step periodic micro-nano patterning process via ultrasonic impact treatment on a rough SUS301 stainless steel surface / L. Li, M. Kim, S. Lee, T. Kim, J. Lee, D. Lee // Surface & Coatings Technology. – 2017. – Vol. 330. – P. 204–210. – doi: 10.1016/j.surfcoat.2017.10.004.
  23. Алехин В.П., Алехин О.В. Нанотехнология поверхностной упрочняющей и финишной обработки деталей из конструкционных и инструментальных сталей // Машиностроение и инженерное образование. – 2007. – № 4 (13). – С. 2–13.
  24. Mechanisms of surface roughening of commercial purity titanium during ultrasonic impact treatment / A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Hairullin, E.A. Sinyakova // Materials Science and Engineering: A. – 2015. – Vol. 647. – P. 43–50. – doi: 10.1016/j.msea.2015.08.086.
  25. Зондовая микроскопия: применения и рекомендации по разработке / Б.А. Логинов, П.Б. Логинов, В.Б. Логинов, А.Б. Логинов // Наноиндустрия. – 2019. – Т. 12, № 6 (92). – С. 352–364.
  26. Makarov A.V., Korshunov L.G. Metallophysical foundations of nanostructuring frictional treatment of steels // The Physics of Metals and Metallography. – 2019. – Vol. 120, iss. 3. – P. 303–311. – doi: 10.1134/S0031918X18120128.
  27. On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue / J.O. Peters, B.L. Boyce, X. Chen, J.M. McNaney, J.W. Hutchinson, R.O. Ritchie // Engineering Fracture Mechanics. – 2002. – Vol. 69. – P. 1425–1446. – doi: 10.1016/S0013-7944(01)00152-7.
  28. Mordyuk B.N., Prokopenko G.I. Ultrasonic impact peening for the surface properties’; management // Journal of Sound and Vibration. – 2007. – Vol. 308. – P. 855–866. – doi: 10.1016/j.jsv.2007.03.054.
  29. Arifvianto B., Mahardika M. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel // Applied Surface Science. – 2012. – Vol. 258. – P. 4538–4543. – doi: 10.1016/j.apsusc.2012.01.021.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».