Study of the Phase Composition and its Effect on the Mechanical Properties of WC- (Fe-Mn-C) Сarbidesteels

Cover Page

Cite item

Full Text

Abstract

Introduction. For development of new composite materials with high static and dynamic strength a great attention is paid to the binder phase. The usage of steels with structural instability, for example, Fe-Mn-C steels as a binder phase of composites, is a promising direction, due to its high ability to strain hardening and the presence of several martensitic transformations. These materials can provide an effective relaxation of stress concentrators arising near carbide particles in the composite during loading of the material due to free form change in the intercarbide space and transfer the external load to the carbide grains. A number of studies are devoted to such research; however, upon preparation of WC- (Fe-Mn-C) carbidesteels, the elemental composition of the binder phase may change due to the technological features of its manufacture by powder metallurgy methods. Therefore, studying the influence of the manganese content changes in the Fe-Mn-C steel binder on the phase composition and mechanical properties of WC-(Fe-Mn-C) materials is very important. The aim of this work is to study the phase composition and its influence on the mechanical properties of WC-(Fe-Mn-C) carbidesteels with changes of the manganese concentration in the matrix. In this work, WC- (Fe-Mn-C) steels are studied, the manganese content in the binder phase is varied from 4 to 18 wt. % . Materials and methods. Carbidesteels are obtained by impregnation of WC carcass with subsequent quenching in oil from 1150 oC. Studies of carbidesteels in initial state and after axial compression test are carried out using X-ray phase and X-ray diffraction analysis, scanning electron microscopy. Results and discussion. The carbide phase content in the obtained carbidesteels is 82 vol. %, the average grain size of tungsten carbide is 2.4 μm, while the porosity does not exceed 0.5%. An increase in the manganese content in the binder phase of carbidesteels leads to a change in the phase composition of the binder phase and to an increase in the lattice parameter of austenite. When the binder phase is in a single-phase state, with a manganese content of 8 wt.%, the maximum relative deformation to failure equal to 6.5% is observed. With an increase in the manganese content in the binder phase, the axial compression strength decreases from 4050 to 3500 MPa. Designed carbidesteels can be used as a different kind of tool. The data obtained can be applied in the development of new composite materials with high physical and mechanical properties.

About the authors

I. N. Sevostyanova

Email: sevir@ispms.tsc.ru
Ph.D. (Engineering), 1. Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. National Research Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russian Federation, sevir@ispms.tsc.ru

T. Yu. Sablina

Email: sabtat@ispms.tsc.ru
Ph.D. (Engineering), 1. Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. National Research Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russian Federation, sabtat@ispms.tsc.ru

D. V. Fedorov

Email: fedorovdv@virial.ru
VIRIAL LLC, 27 Engels Avenue, Saint-Petersburg, 194156, Russian Federation, fedorovdv@virial.ru

A. V. Golub

Email: dr.sasgol@yandex.ru
VIRIAL LLC, 27 Engels Avenue, Saint-Petersburg, 194156, Russian Federation, dr.sasgol@yandex.ru

S. N. Kulkov

Email: kulkov@ms.tsc.ru
D.Sc. (Physics and Mathematics), Professor, 1. Institute of Strength Physics and Materials Science of the Siberian Branch of the RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. National Research Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russian Federation, kulkov@ms.tsc.ru

References

  1. Термические напряжения в твердом сплаве WC-Co после спекания / В.А. Погода, В.П. Кебко, М.Г. Лошак, Л.И. Александрова // Проблемы прочности. – 1990. – № 12. – C. 87–93.
  2. Compressive deformation and fracture in WC materials / D. Rowcliffe, V. Jayaram, M. Hibbs, R. Sinclair // Materials Science and Engineering: A. – 1988. – Vol. 105/106, pt. 2. – P. 299–303. – doi: 10.1016/0025-5416(88)90710-0.
  3. In situ loading response of WC–Ni: origins of toughness / J.W. Paggett, A.D. Krawitz, E.F. Drake, M.A.M. Bourke, V. Livescu, B. Claussen, D.W. Brown // Journal of Refractory Metals and Hard Materials. – 2006. – Vol. 24, iss. 1–2. – P. 122–128. – doi: 10.1016/j.ijrmhm.2005.06.005.
  4. Measurement and modeling of room temperature co-deformation in WC–10 wt.% Co / V. Livescu, B. Clausen, J.W. Paggett, A.D. Krawitz, E.F. Drake, M.A.M. Bourke // Materials Science and Engineering: A. – 2005. – Vol. 399, iss. 1–2. – P. 134–140. doi: 10.1016/j.msea.2005.02.024.
  5. Mechanical deformation of WC–Co composite micropillars under uniaxial compression / J.M. Tarragó, J.J. Roa, E. Jiménez-Piqué, E. Keown, J. Fair, L. Llanes // International Journal of Refractory Metals and Hard Materials. – 2016. – Vol. 54. – P. 70–74. – doi: 10.1016/j.ijrmhm.2015.07.015.
  6. Microstructure and anodic dissolution mechanism of brazed WC–Ni composite coatings / L.X. Gao, T. Zhou, D.Q. Zhang, K.Y. Lee // Corrosion Engineering, Science and Technology. – 2014. – Vol. 49, iss. 3. – P. 204–208. – doi: 10.1179/1743278213y.0000000124.
  7. Erosion–corrosion behaviour of zirconia, WC–6Co, WC–6Ni and UNS S31600 / N. Andrews, L. Giourntas, A.M. Galloway, A. Pearson // International Journal of Refractory Metals and Hard Materials. – 2015. – Vol. 48. – P. 229–237. – doi: 10.1016/j.ijrmhm.2014.09.001.
  8. Chang S.-H., Chang P.-Y. Study on the mechanical properties, microstructure and corrosion behaviors of nano-WC–Co–Ni–Fe hard materials through HIP and hot-press sintering processes // Materials Science and Engineering: A. – 2014. – Vol. 618. – P. 56–62. – doi: 10.1016/j.msea.2014.08.081.
  9. Chang S-H., Chen S-L. Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys // Journal of Alloys and Compounds. 2014. – Vol. 585. – P. 407–413. – doi: 10.1016/j.jallcom.2013.09.188.
  10. Rafiaei S.M., Bahrami A., Shokouhimehr M. Influence of Ni/Co binders and Mo2C on the microstructure evolution and mechanical properties of (Ti0.93W0.07) C–based cermets // Ceramics International. – 2018. – Vol. 44, iss. 15. – P. 17655–17659. – doi: 10.1016/j.ceramint.2018.06.227.
  11. Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides / Y. Gao, B-H. Luo, K-J. He, W.-W. Zhang, Z.-H. Bai // Ceramics International. – 2018. – Vol. 44, iss. 2. – P. 2030–2041 – doi: 10.1016/j.ceramint.2017.10.148.
  12. Ferritic chromium steel as binder metal for WC cemented carbides / M. Tarraste, J. Kübarsepp, K. Juhani, A. Mere, M. Kolnes, M. Viljus, B. Maaten // International Journal of Refractory Metals & Hard Materials. – 2018. – Vol. 73. – P. 183–191. – doi: 10.1016/j.ijrmhm.2018.02.010.
  13. Structural-phase changes in hard alloy WC-steel 110G13 after dynamic loading / A.V. Paul', S.F. Gnyusov, Y.F. Ivanov, S.N. Kul'kov, E.V. Kozlov // Russian Physics Journal. – 1994. – Vol. 37, iss. 8. – P. 757–761. – doi: 10.1007/bf00559871.
  14. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/e-martensite dual-phase Fe–Mn–C steels / J.-B. Seol, J.E. Jung, Y.W. Jang, C.G. Park // Acta Materialia. – 2013. – Vol. 61. – P. 558–578. – doi: 10.1016/j.actamat.2012.09.078.
  15. Волынова Т.Ф. Высокомарганцовистые стали и сплавы – М.: Металлургия, – 1980. – 270 c. – ISBN 5-229-00069-4.
  16. Лысак Л.И., Николин Б.И. Физические основы термической обработки стали. – Киев: Техника, 1975. – 304 с.
  17. Богачев И.Н., Еголаев В.Ф. Структура и свойства железомарганцевых сплавов. – М.: Металлургия, 1973. – 296 с.
  18. High-concentration carbon assists plasticity-driven hydrogen embrittlement in a Fe-high Mn steel with a relatively high stacking fault energy / I.B. Tugluca, M. Koyama, B. Bal, D. Canadinc, E. Akiyama, K. Tsuzaki // Materials Science & Engineering: A. – 2018. – Vol. 717. – P. 78–84. – doi: 10.1016/j.msea.2018.01.087.
  19. Influence of annealing temperature on mechanical properties and microstructures of a high manganese austenitic steel / X. Yuan, L. Chen, Y. Zhao, H. Di, F. Zhu // Journal of Materials Processing Technology. – 2015. – Vol. 217. – P. 278–285. – doi: 10.1016/j.jmatprotec.2014.11.027.
  20. Влияние содержания C и Mn на свойства высокомарганцовистой стали / Б.Б. Винокур, С.Е. Кондратюк, Г.Г. Луценко, О.Г. Касаткин // Металлы. – 1986. – № 2. – C. 123–127.
  21. Филипов М.А., Зильберштейн М.Р. Стабильность аустенита и свойства высокомарганцовистых среднеуглеродистых сталей // Металлы. – 1992. – № 6. – C. 56–61.
  22. Влияние углерода и марганца на фазовый состав, мартенситные превращения при нагружении и механические свойства марганцовистых сталей / Л.С. Малинов, А.П. Чейлях, Е.Л. Малинова, Л.И. Бурлаченко // Металлы. – 1995. – № 2. – C. 67–73.
  23. Еголаев В.Ф., Богачев И.Н. Фазовые превращения и упрочнение при пластической деформации железомарганцевого сплава легированного молибденом и вольфрамом // Физика металлов и металловедение. – 1964. – Т. 18, № 3. – С. 423–427.
  24. Гуревич Ю.Г. Технология получения твердых сплавов на основе карбида титана методом пропитки, исключающим объемную усадку // Цветные металлы. – 2013. – № 11 (851). – С. 75–78.
  25. Кульков С.Н., Гнюсов С.Ф. Карбидостали на основе карбидов титана и вольфрама. – Томск: Изд-во науч.-техн. лит., 2006. – 240 с. – ISBN 5-89503-290-7.
  26. Гнюсов С.Ф. Фазовый состав и формирование механических свойств твердых сплавов карбид вольфрама – структурно-неустойчивая связка: дис. канд. тех. наук: 01.04.07. – Томск, 1991. – 198 с.
  27. Салтыков С.А. Стереометрическая металлография. – М.: Металлургия, 1976. – 270 с.
  28. Вишняков Я.Д. Современные методы исследования структуры деформированных кристаллов. – М.: Металлургия, 1975. – 480 с.
  29. Timoshenko S.P., Goodier J.N. Theory of elasticity. – New York: McGraw-Hill, 1951. – 506 с.
  30. Структурные превращения высокомарганцовистых аустенитных сталей при деформировании сдвигом под давлением / В.А. Теплов, Л.Г. Коршунов, В.А. Щабашов, Р.И. Кузнецов, В.П. Пилюгин, Д.И. Тупица // Физика металлов и металловедение. – 1988. – Т. 66, № 3. – С. 563–571.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».