Structure Features and Wear Resistance of Layers, formed by Ni-based Self-fluxing Alloy combined with Boron by Electron Beam, revealed in the Air Atmosphere

Abstract

Introduction. The formation of protective layers on working surfaces of machine parts comprised of chromium-nickel austenitic steels is an effective way to increase its reliability and durability. Ni-base self-fluxing alloys are widely used in order to create wear resistant coatings. The possibility of increasing the set of properties of Ni-Cr-Si-B alloys by adding reinforcing compounds to its matrix or by synthesizing reinforcing phases directly in the process of forming a protective layer is a significant interest of domestic and foreign scientists. The literature does not provide the information on the formation of protective layers on the surface of austenitic steels using cladding by relativistic electron beams of a Ni-Cr-Si-B alloy in combination with hardening additives. Aim of the current work is to increase the tribotechnical properties of the surface layers of steel workpieces via air-revealed electron beam cladding of a Ni-Cr-Si-B alloy in combination with amorphous boron taken in different weight ratios. The proportion of amorphous boron in the powder mixture is 5, 10, and 15 wt. % respectively. The structural features of the cladded layers are investigated by using the following research methods: optical metallography (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron microprobe analysis (EMPA). The properties of the surface hardened materials are determined by microhardness investigations and wear resistance during friction against fixed abrasive particles and under conditions of hydroabrasive treatment. Results and discussion. The material produced during cladding of a Ni-Cr-Si-B alloy in combination with 15 wt. % boron is characterized by the maximum microhardness (1000 HV) and wear resistance under various wear conditions. The main structural factor providing an effective increase in the operational characteristics is the formation Fe2B, (Cr, Fe)B borides. It is shown that during Ni-Cr-Si-B alloy +15 wt. % boron cladding precipitation compounds are characterized by phase heterogeneity. The inner part of the two-phase complex particles is CrB2 around which (Fe, Cr)2B is released.

About the authors

T. A. Zimogliadova

Email: zimogliadovatatiana@gmail.com
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, zimogliadovatatiana@gmail.com

E. G. Bushueva

Email: dusias@mail.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, dusias@mail.ru

A. A. Shtertser

Email: asterzer@mail.ru
D.Sc. (Physics and Mathematics), Associate Professor, Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the RAS, 15 Ac. Lavrentieva ave., Novosibirsk, 630090, Russian Federation, asterzer@mail.ru

B. E. Grinberg

Email: b_grinberg@mail.ru
Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the RAS, 15 Ac. Lavrentieva ave., Novosibirsk, 630090, Russian Federation, b_grinberg@mail.ru

N. N. Soboleva

Email: natashasoboleva@list.ru
Ph.D. (Engineering), Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya st., 620049, Ekaterinburg, Russian Federation, natashasoboleva@list.ru

E. Kollmannsberger

Email: s-ekollm@haw-landshut.de
University of Applied Sciences Landshut, 1 Am Lurzenhof, Landshut, 84036, Germany, s-ekollm@haw-landshut.de

I. K. Chakin

Email: chak_in2003@bk.ru
Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 11 Acad. Lavrentieva Pr., Novosibirsk, 630090, Russian Federation, chak_in2003@bk.ru

D. S. Bibko

Email: denbibko@mail.ru
Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 11 Acad. Lavrentieva Pr., Novosibirsk, 630090, Russian Federation, denbibko@mail.ru

A. V. Leonov

Email: Alexeyleonov2009@yandex.ru
Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 11 Acad. Lavrentieva Pr., Novosibirsk, 630090, Russian Federation, Alexeyleonov2009@yandex.ru

D. E. Safarova

Email: safarova10ab@mail.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, safarova10ab@mail.ru

References

  1. Gardner L. Stability and design of stainless steel structures – review and outlook // Thin-Walled Structures. – 2019. – Vol. 141. – P. 208–216. – doi: 10.1016/j.tws.2019.04.019.
  2. Восстановление деталей машин / Ф.И. Пантелеенко, В.П. Лялякин, В.П. Иванов, В.М. Константинов. – М: Машиностроение, 2003. – 672 с. – ISBN 5-217-03188-3.
  3. Методы исследования материалов: структура, свойства и процессы нанесения неорганических покрытий / Л.И. Тушинский, А.В. Плохов, А.О. Токарев, В.И. Синдеев. – М: Мир, 2004. – 384 с. – ISBN 5-03-003572-9.
  4. Kesavan D., Kamaraj M. The microstructure and high temperature wear performance of a nickel base hardfaced coating // Surface and Coatings Technology. – 2010. – Vol. 204, iss. 24. – P. 4034–4043. – doi: 10.1016/j.surfcoat.2010.05.022.
  5. Effect of the substrate dilution on the room and high temperature tribological behaviour of Ni-based coatings deposited by PTA on grey cast iron / F. Fernandes, T. Polcar, A. Loureiro, A. Cavaleiro // Surface and Coatings Technology. – 2015. – Vol. 281. – P. 11–19. – doi: 10.1016/j.surfcoat.2015.09.034.
  6. Shevchenko O.I., Trekin G.E., Farber V.M. Distribution of chemical elements in structural components of a facing of a self-fluxing nickel alloy // Metal Science and Heat Treatment. – 1997. – Vol. 39, iss. 6. – P. 233–235. – doi: 10.1007/BF02467225.
  7. Microchemical and microstructural studies in a PTA weld overlay of Ni-Cr-Si-B alloy on AISI 304L stainless steel / C. Sudha, P. Shankar, Subba R.V. Rao, R. Thirumurugesan, M. Vijayalakshmi, B. Raj // Surface and Coatings Technology – 2008. – Vol. 202, iss. 10. – P. 2103–2112. – doi: 10.1016/j.surfcoat.2007.08.063.
  8. Reinaldo P.R., D’;Oliveira A.S.C.M. NiCrSiB coatings deposited by plasma transferred arc on different steel substrates // Journal of Materials Engineering and Performance. – 2013. – Vol. 22, iss. 2. – P. 590–597. – doi: 10.1007/s11665-012-0271-7.
  9. Microstructural characterisation of NiWCrBSiC alloy coating produced by HVOF thermal spraying / L. Gil, M.H. Staia, R. Guevara, E.S. Puchi-Cabrera, D.B. Lewis // Surface Engineering. – 2006. – Vol. 22, iss. 4. – P. 304–313. – doi: 10.1179/174329406X122900.
  10. Makarov A.V., Soboleva N.N., Malygina I.Y. Role of the strengthening phases in abrasive wear resistance of laser-clad NiCrBSi coatings // Journal of Friction and Wear. – 2017. – Vol. 38, N 4. – P. 272–278. – doi: 10.3103/S1068366617040080.
  11. Microstructure, magnetic properties and empirical electron theory calculations of laser cladding FeNiCr/60% WC composite coatings with Mo additions / J. Yang, X. Miao, X. Wang, H. Chen, F. Yang // International Journal of Refractory Metals and Hard Materials. – 2016. – Vol. 54. – P. 216–222. – doi: 10.1016/j.ijrmhm.2015.07.034.
  12. Effect of WC addition on microstructures of laser melted Ni-based alloy powder / Y.M. Zhang, M. Hida, A. Sakakibara, Y. Takemoto // Surface and Coatings Technology. – 2003. – Vol. 169–170. – P. 384–387. – doi: 10.1016/S0257-8972(03)00058-6.
  13. Nurminen J., Näkki J., Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding // International Journal of Refractory Metals and Hard Materials. – 2009. – Vol. 27, iss. 2. – P. 472–478. – doi: 10.1016/j.ijrmhm.2008.10.008.
  14. The study of properties of Ni–W2C and Co–W2C powders thermal sprayed deposits / A. Klimpel, L.A. Dobrzanski, A. Lisiecki, D. Janicki // Journal of Materials Processing Technology. – 2005. – Vol. 164–165. – P. 1068–1073. – doi: 10.1016/j.jmatprotec.2005.02.198.
  15. Самсонов Г.В., Серебрякова Т.И., Неронов В.А. Бориды. – М.: Атомиздат, 1975. – 376 c.
  16. Microstructure and phase formation in a rapidly solidified laser-deposited Ni-Cr-B-Si-C hardfacing alloy / I. Hemmati, V. Ocelík, K. Csach, J.Th.M. de Hosson // Metallurgical and Materials Transactions A. – 2014. – Vol. 45, iss. 2. – P. 878–892. – doi: 10.1007/s11661-013-2004-4.
  17. Formation of a Cr3C2/Ni–Cr alloy layer by an electron beam cladding method and evaluation of the layer properties / J. Morimoto, N. Abe, F. Kuriyama, M. Tomie // Vacuum. – 2001. – Vol. 62, iss. 2–3. – P. 203–210. – doi: 10.1016/S0042-207X(00)00439-5.
  18. Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten / A.G. Grigoryants, A.Y. Stavertiy, K.O. Bazaleeva, T.Y. Yudina, N.A. Smirnova, R.S. Tretyakov, A.I. Misyurov // Welding International. – 2017. – Vol. 31, iss. 1. – P. 52–57. – doi: 10.1080/09507116.2016.1213039.
  19. Голковский М.Г. Закалка и наплавка релятивистским электронным пучком вне вакуума. Технологические возможности метода. – Saarbr?cken: LAP Lambert Academic Publishing, 2013. – 325 c. – ISBN 978-3-659-31094-2.
  20. Atmospheric electron-beam surface alloying of titanium with tantalum / M.G. Golkovski, I.A. Bataev, A.A. Bataev, A.A. Ruktuev, T.V. Zhuravina, N.K. Kuksanov, V.A. Bataev // Materials Science and Engineering: A. – 2013. – Vol. 578. – P. 310–317. – doi: 10.1016/j.msea.2013.04.103.
  21. Euh K., Lee J., Lee S. Microstructural modification and property improvement of boride/Ti-6Al-4V surface-alloyed materials fabricated by high-energy electron-beam irradiation // Metallurgical and Materials Transactions A. – 2001. – Vol. 32, N 10. – P. 2499–2508. – doi: 10.1007/s11661-001-0039-4.
  22. Tribological properties of TiC particles reinforced Ni-based alloy composite coatings / B. Cai, Y.-F. Tan, L. He, H. Tan, L. Gao // Transactions of Nonferrous Metals Society of China. – 2013. – Vol. 23, iss. 6. – P. 1681–1688.
  23. Structure and properties of functional self-fluxing nickel-containing coatings obtained by non-vacuum electron-beam cladding / T.A. Zimoglyadova, H. Saage, V.A. Pasichnik, A.S. Egorova, O. Matts // Metal Science and Heat Treatment. – 2019. – Vol. 60, iss. 9–10. – P. 633–640. – doi: 10.1007/s11041-019-00330-4.
  24. Shtertser A.A., Gringerg B.E. Impact of a hydroabrasive jet on material: hydroabrasive wear // Journal of Applied Mechanics and Technical Physics. – 2013. – Vol. 54, N 3. – P. 508–516. – doi: 10.1134/S002189441303022X.
  25. Виноградов В.Н., Сорокин Г.М., Колокольников М.Г. Абразивное изнашивание. – М.: Машиностроение, 1990. – 222 с. – ISBN 5-217-00836-9.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».