Stochastic Two-Mode Hereditary Model of a Cosmic Dynamo
- 作者: Kazakov E.A.1, Vodinchar G.M.1
-
隶属关系:
- Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS
- 期: 卷 48, 编号 3 (2024)
- 页面: 70-82
- 栏目: Mathematical modeling
- URL: https://journal-vniispk.ru/2079-6641/article/view/277562
- DOI: https://doi.org/10.26117/2079-6641-2024-48-3-70-82
- EDN: https://elibrary.ru/YFWFOR
- ID: 277562
如何引用文章
全文:
详细
The paper is devoted to a class of stochastic two-mode hereditary models of the cosmic dynamo. The models include two magnetic field generators — large-scale and turbulent (-effect). The influence of the magnetic field on the motion of the medium is presented through the suppression of the -effect by a functional of the field components, which introduces memory (hereditary) into the model. The model describes the dynamics of only large-scale components, but takes into account the possible impact of small-scale modes using a stochastic term. This term models the influence of possible spontaneous synchronization of small-scale modes. The paper also presents a numerical scheme for solving the integro-differential equations of the model. The numerical scheme consists of two parts, for the differential part the Adams «predictor-corrector» method of the fourth order is used, and for the integral part the Simpson method.The main result of the work is a generalized model of a dynamo system, with an additive addition of a random correction to the -generator. Taking into account such a correction significantly diversifies the dynamic modes in the model.
作者简介
Evgeny Kazakov
Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS
编辑信件的主要联系方式.
Email: Kazakov@ikir.ru
ORCID iD: 0000-0001-7235-4148
Junior Researcher, Lab. of electromagnetic propogation
俄罗斯联邦, 684034, Paratunka, Mirnaya str. 7Gleb Vodinchar
Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS
Email: Kazakov@ikir.ru
ORCID iD: 0000-0002-5516-1931
Ph. D. (Phys. & Math.), Leading Researcher, Lab. for Simulation of Physical Processes
俄罗斯联邦, 684034, Paratunka, Mirnaya str. 7参考
- Zeldovich Ya. B., Ruzmaikin A. A., Sokolov D. D. Magnitie polay v astrofizike [Magnetic fields in astrophysics]Moscow-Izhevsk: SIC «RHD», 2006. (In Russian).
- Krause F., Rädler K.-H. Mean-field magnetohydrodynamics and dynamo theory. - New York: PergamonPress, 1980.
- Merril R.T., McElhinny M.W., McFadden P.L. The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. London: Academic Press, 1996.
- Brandenburg A. Memory effects in turbulent transport, Astrophys. J, 2009. vol. 706. P. 712–726.
- Hori K., Yoshida S. Non-local memory effects of the electromotive force by fluid motion with helicity and two-dimensional periodicity. Geophys. Astro. Fluid. 2008. vol. 102. P. 601–632.
- Vodinchar G. M. Hereditary Oscillator Associated with the Model of a Large-Scale αω-Dynamo, Mathematics, 2020, vol. 8, no. 11, p. 2065. doi: 10.3390/math8112065.
- Kazakov E. A. Hereditary low-mode dynamo model. Vestnik KRAUNC. Fiz.-mat. nauki. 2021. vol. 35. no. 2. P. 40-47. doi: 10.26117/2079-6641-2021-35-2-40-47 (In Russian).
- Kazakov E. A. Two-mode model of a hydromagnetic dynamo with memory. Computational Technologies. 2022. vol. 27. no. 6. P.19–32. doi: 10.25743/ICT.2022.27.6.003. (In Russian).
- Vodinchar G. M., Kazakov E. A. Elimination of the integral term in the equations of one hereditary system related to the hydromagnetic dynamo. Vest. KRAUNC. Fiz.-mat. nauki. 2023. vol. 42. no. 1. P. 180-190. doi: 10.26117/2079-6641-2023-42-1-180-190. (In Russian).
- Vodinchar G., Kazakov E. The Lorenz system and its generalizations as dynamo models with memory. E3S Web of Conf. 2018, vol. 62. 02011. doi: 10.1051/e3sconf/20186202011.
- Kolisnichenko A. V., Marov M. Ya. Turbulence and self-organization. Problems of modeling space and natural environments. Moscow. Binom, 2009. (In Russian).
- Vodinchar G., Feshchenko L. Fractal Properties of the Magnetic Polarity Scale in the Stochastic Hereditary αω-Dynamo Model, Fractal Fract, 2022. vol. 6, no. 6, p. 328. doi: 10.3390/math8112065.
- Korn G., Korn T. Spravochnik po matimatike dlay nauchnih rabotikov i ingenerov [Handbook of mathematics for scientists and engineers]. Moscow. Nauka. 1968. (In Russian).
- Kalitkin N. N. Numerical methods Moscow: Science. 1978. 512. (In Russian).
- Tutueva A. V., et al. G. Semi-explicit multistep Adams-Bashforth-Moulton methods for solving stiff systems of ordinary differential equations. Jour. of Instrum. Enginer. 2021. vol. 64, no. 8. P. 599-607 (in Russian).
- Moheuddin М. М., Titu M.A.S., Hossain S. A New Analysis of Approximate Solutions for Numerical Integration Problems with Quadrature-based Methods. Pure and Applied Mathem. Jour. 2020. vol. 9. no. 3. P. 46-54. doi: 10.11648/j.pamj.20200903.11.
补充文件
