Geodynamo simulations software package suite based on spectral hereditary models

Cover Page

Cite item

Full Text

Abstract

The study of the geodynamics problem is often carried out on the basis of spectral models, when the fields are fully or partially expanded in eigenfields (eigenmodes) of suitable spectral problems. The most meaningful from the physical point of view are spectral problems of free oscillations or free decay of fields. The compilation of spectral models first of all requires calculating the parameters of the basic modes, and then the model coefficients. Most often, these are the Galerkin coefficients. Then the problem of actually solving the model equations numerically arises. The paper describes a software package developed by the authors that allows solving such problems. It includes modules for calculating the mode parameters, a module for calculating the Galerkin coefficients, two modules for numerically solving the system, and a noise generation module. The package allows calculating the model with hereditary quenching of the α-effect by the field energy. Two types of the quenching functional kernel are provided, requiring different difference schemes. These schemes are implemented in two numerical solution modules. Random noise simulates the effect of spontaneous synchronization of small-scale field components, which is absent on average. The calculation of the parameters of the basic modes and Galerkin coefficients is performed using combined symbolic-numerical computations, so the corresponding modules are implemented in the Maple package. The need for symbolic computations is associated with the great complexity of the expressions of the modes themselves and the integrands when calculating the Galerkin coefficients. Therefore, the task arises first of all to form the necessary expressions. This is done using symbolic calculations. The remaining modules are implemented in C++. The developed package can be useful for specialists studying the geodynamo problem based on spectral models and memory effects in this problem.

Full Text

Введение

Задача геодинамо представляет собой задачу о магнитогидродинамической конвекции проводящей вязкой несжимаемой жидкости во вращающейся сферической оболочке с твёрдыми границами (внешнее ядро Земли) [1-3]. Система уравнений геодинамо связывает поля скорости, давления, температуры и магнитной индукции и включает уравнения Навье-Стокса с кориолисовым и лоренцевым членами, уравнение температуропроводности и уравнение индукции.

Для её исследования применяют различные численные методы, в том числе и метод Галеркина. Следует отметить, что, хотя метод Галеркина и является по своему происхождению численным методом решения уравнений, его можно рассматривать при малом числе мод как способ построения малоразмерных моделей [4, 5]. Поля задачи при однородных граничных условиях представляются в виде линейных комбинаций стационарных базисных полей (мод) с зависящими от времени амплитудами. Каждое базисное поле должно удовлетворять граничным условиям, что гарантирует точное выполнение этих условий при любых амплитудах. Геометрически метод Галеркина выполняет тогда проектирование исходных уравнений на подпространства, порождаемые модами разложения.

В случае малоразмерных (маломодовых) моделей необязательна полнота систем используемых мод, достаточно, чтобы они обладали хорошими аппроксимирующими свойствами. Поэтому возникает вопрос о выборе естественного базиса. Пожалуй, наиболее естественными пространственными структурами полей будут структуры мод свободных затуханий, именно они используются при построении спектральных моделей. Применение процедуры метода Галеркина дает динамическую систему для амплитуд мод. Эта система вместе с набором мод и образует спектральную модель [6, 7].

В случае маломодовых моделей, содержащих только крупномасштабные моды, необходимо включать в уравнения динамо в явном виде альфа-эффект. Он описывает генерацию крупномасштабного поля турбулентными мелкомасштабными вихрями. Чтобы избежать неограниченного роста, необходима и обратная связь в виде подавления альфа-эффекта энергией этого поля [8, 9]. Известно, что в турбулентных магнитогидродинамических системах проявляется свойство памяти [10], поэтому подавление α-эффекта в рассматриваемых моделях вводится с учетом этого свойства, а именно, подавление определяется не только актуальным, но и всеми предшествующими значениями энергии. Математически это формализуется в виде функционала от энергии с разностным ядром, и уравнения модели являются интегро-дифференциальными. Для некоторых частных типов ядер возможно сведение уравнений только к дифференциальным. Крупномасштабные приближения неявно предполагают, что влияние мелкомасштабных мод в среднем нулевое. Однако эти моды могут спонтанно синхронизироваться на случайное время, оказывая влияние на генерацию. В модели это введено как аддитивная поправка в интенсивность альфа-эффекта в виде случайного процесса, представляющего собой последовательность прямоугольных импульсов, возникающих в случайные моменты, имеющих случайную длительность и гауссовскую, в среднем нулевую, амплитуду.

Для автоматизированного составления описанных моделей и проведения численного моделирования разработан программный комплекс комбинированных символьно-численных вычислений, описываемый в настоящей работе.

Уравнения эредитарной спектральной модели

Опишем прежде всего, что из себя представляют спектральные модели, для расчета параметров которых и дальнейшего численного решения разработан вычислительный комплекс.

Жидкое ядро Земли рассматривается как сферическая оболочка вязкой проводящей жидкости с твердыми границами, равномерно вращающейся вокруг оси Oz. В сферической системе координат (r, θ,φ) внутренняя граница ядра (ICB) определяется как r= r i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacaWGYbWaaSbaaSqaaiaadMgaaeqaaaaa@3BD6@ , а граница ядро MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  мантия (CMB) как r= r o MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai2 dacaWGYbWaaSbaaSqaaiaad+gaaeqaaaaa@3BDC@ . Температура на ICB и CMB постоянна и равна T i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGPbaabeaaaaa@39FA@  и T o MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGVbaabeaaaaa@3A00@  соответственно.

В качестве единицы длины принимается внешний радиус Земли, а в качестве единицы температуры принимается δT= T i T o MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaam ivaiaai2dacaWGubWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0Iaamiv amaaBaaaleaacaWGVbaabeaaaaa@402F@ . Тогда в этих единицах r o =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGVbaabeaakiaai2dacaaIXaaaaa@3BAA@ , r i =0.35 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGPbaabeaakiaai2dacaaIWaGaaGOlaiaaiodacaaI1aaa aa@3DD7@  и T o = T i +1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGVbaabeaakiaai2dacaWGubWaaSbaaSqaaiaadMgaaeqa aOGaey4kaSIaaGymaaaa@3E6B@ .

Поле T=T(r,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaai2 dacaWGubGaaGikaiaadkhacaaISaGaamiDaiaaiMcaaaa@3E8B@  задает отклонение температуры относительно равновесного профиля (без конвекции)

T s = r i 1 r i 1 r 1 + T i 1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaadsfadaWgaaWcbaGaam4CaaqabaGccaaI9aWaaSaaaeaacaWG YbWaaSbaaSqaaiaadMgaaeqaaaGcbaGaaGymaiabgkHiTiaadkhada WgaaWcbaGaamyAaaqabaaaaOWaaeWaaeaadaWcaaqaaiaaigdaaeaa caWGYbaaaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGHRaWkcaWGub WaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGymaiaai6caaeaaaaaa aa@4B01@

Обезразмеренные уравнения геодинамо в ядре ( r1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgs MiJkaaigdaaaa@3B6E@  ) имеют вид:

v t + v v=p+Δv2 E 1 e z ×v+ RaPr 1 Tr+rotB×B, T t + v T+ T s = Pr 1 ΔT, B t =rot v×B + R α rot α(r)B + Pm 1 ΔB, v=0,B=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa aabaWaaSaaaeaacqGHciITcaWG2baabaGaeyOaIyRaamiDaaaacqGH RaWkdaqadaqaaiaadAhacqGHhis0aiaawIcacaGLPaaacaWG2bGaaG ypaiabgkHiTiabgEGirlaadchacqGHRaWkcqqHuoarcaWG2bGaeyOe I0IaaGOmaiaabweadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWGLb WaaSbaaSqaaiaadQhaaeqaaOGaey41aqRaamODaiabgUcaRiaabkfa caqGHbGaaeiuaiaabkhadaahaaWcbeqaaiabgkHiTiaaigdaaaGcca WGubGaamOCaiabgUcaRiaabkhacaqGVbGaaeiDaiaadkeacqGHxdaT caWGcbGaaGilaaqaaaqaamaalaaabaGaeyOaIyRaamivaaqaaiabgk Gi2kaadshaaaGaey4kaSYaaeWaaeaacaWG2bGaeyyXICTaey4bIena caGLOaGaayzkaaWaaeWaaeaacaWGubGaey4kaSIaamivamaaBaaale aacaWGZbaabeaaaOGaayjkaiaawMcaaiaai2dacaqGqbGaaeOCamaa CaaaleqabaGaeyOeI0IaaGymaaaakiabfs5aejaadsfacaaISaaaba aabaWaaSaaaeaacqGHciITcaWGcbaabaGaeyOaIyRaamiDaaaacaaI 9aGaaeOCaiaab+gacaqG0bWaaeWaaeaacaWG2bGaey41aqRaamOqaa GaayjkaiaawMcaaiabgUcaRiaabkfadaWgaaWcbaGaeqySdegabeaa kiaabkhacaqGVbGaaeiDamaabmaabaGaeqySdeMaaGikaiaadkhaca aIPaGaamOqaaGaayjkaiaawMcaaiabgUcaRiaabcfacaqGTbWaaWba aSqabeaacqGHsislcaaIXaaaaOGaeuiLdqKaamOqaiaaiYcaaeaaae aacqGHhis0caWG2bGaaGypaiaaicdacaaISaGaaGzbVlabgEGirlaa dkeacaaI9aGaaGimaiaaiYcaaeaaaaaaaa@A90E@  (1)

где α(r)=a(r)cosθ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ikaiaadkhacaaIPaGaaGypaiaadggacaaIOaGaamOCaiaaiMcaciGG JbGaai4BaiaacohacqaH4oqCaaa@4494@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  заданное осесимметричное поле тензора параметризованного α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  -эффекта.

Параметры подобия: E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraaaa@38CF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  число Экмана, Ra MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabg gaaaa@39C0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  число Релея, Pr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaabk haaaa@39CF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  число Прандтля, Pm MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaab2 gaaaa@39CA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  магнитное число Прандтля, R α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuamaaBa aaleaacqaHXoqyaeqaaaaa@3AA7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  амплитуда α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  -эффекта.

Среда вне ядра предполагается непроводящей (токи отсутствуют), значит, при r>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaai6 dacaaIXaaaaa@3A81@ :

B=Ψ,гдеΔΨ=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaadkeacaaI9aGaeyOeI0Iaey4bIeTaeuiQdKLaaGilaiaabodb caqG0qGaaeyneiabfs5aejabfI6azjaai2dacaaIWaGaaGOlaaqaaa aaaaa@45B8@  (2)

Граничные условия:

v r= r i =v r=1 =0,T r= r i =T r=1 =0, B r=0 <,B=Ψприr=1,Ψ(r=+)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiaadAhadaqadaqaaiaadkhacaaI9aGaamOCamaaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaaiaai2dacaWG2bWaaeWaaeaacaWGYb GaaGypaiaaigdaaiaawIcacaGLPaaacaaI9aGaaGimaiaaiYcacaaM f8UaamivamaabmaabaGaamOCaiaai2dacaWGYbWaaSbaaSqaaiaadM gaaeqaaaGccaGLOaGaayzkaaGaaGypaiaadsfadaqadaqaaiaadkha caaI9aGaaGymaaGaayjkaiaawMcaaiaai2dacaaIWaGaaGilaaqaaa qaaiaadkeadaqadaqaaiaadkhacaaI9aGaaGimaaGaayjkaiaawMca aiaaiYdacqGHEisPcaaISaGaaGzbVlaadkeacaaI9aGaeyOeI0Iaey 4bIeTaeuiQdKLaae4peiaabcebcaqG4qGaamOCaiaai2dacaaIXaGa aGilaiaaywW7cqqHOoqwcaaIOaGaamOCaiaai2dacqGHRaWkcqGHEi sPcaaIPaGaaGypaiaaicdacaaIUaaabaaaaaaa@752A@  (3)

Общее решение уравнения (2) в виде разложения по сферическим функциям прекрасно известно [11], поэтому решать надо только задачу (1), а выражение для Ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdKfaaa@3996@  дает граничные условия для аналогичного (по сферическим функциям) разложения поля внутри ядра [7].

Поля скорости внутри ядра аппроксимируются конечными линейными комбинациями стационарных полей (мод):

v r,t = l=1 L max β l (t) v l r ,T r,t = s=1 S max α s (t) T s r ,B r,t = p=1 P max γ p (t) B p r . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeqaaa qaaiaadAhadaqadaqaaiaadkhacaaISaGaamiDaaGaayjkaiaawMca aiaai2dadaaeWbqabSqaaiaadYgacaaI9aGaaGymaaqaaiaadYeada WgaaqaaiGac2gacaGGHbGaaiiEaaqabaaaniabggHiLdGccqaHYoGy daWgaaWcbaGaamiBaaqabaGccaaIOaGaamiDaiaaiMcacaWG2bWaaS baaSqaaiaadYgaaeqaaOWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGa aGilaiaaywW7caWGubWaaeWaaeaacaWGYbGaaGilaiaadshaaiaawI cacaGLPaaacaaI9aWaaabCaeqaleaacaWGZbGaaGypaiaaigdaaeaa caWGtbWaaSbaaeaaciGGTbGaaiyyaiaacIhaaeqaaaqdcqGHris5aO GaeqySde2aaSbaaSqaaiaadohaaeqaaOGaaGikaiaadshacaaIPaGa amivamaaBaaaleaacaWGZbaabeaakmaabmaabaGaamOCaaGaayjkai aawMcaaiaaiYcacaaMf8UaamOqamaabmaabaGaamOCaiaaiYcacaWG 0baacaGLOaGaayzkaaGaaGypamaaqahabeWcbaGaamiCaiaai2daca aIXaaabaGaamiuamaaBaaabaGaciyBaiaacggacaGG4baabeaaa0Ga eyyeIuoakiabeo7aNnaaBaaaleaacaWGWbaabeaakiaaiIcacaWG0b GaaGykaiaadkeadaWgaaWcbaGaamiCaaqabaGcdaqadaqaaiaadkha aiaawIcacaGLPaaacaaIUaaaaaaa@8592@  (4)

Базисные моды являются модами свободного затухания полей, т.е. решениями спектральных задач

μvp+Δv=0,v=0, λT+ΔT=0, ηB+ΔB=0,B=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaa qaaiabeY7aTjaadAhacqGHsislcqGHhis0caWGWbGaey4kaSIaeuiL dqKaamODaiaai2dacaaIWaGaaGilaiaaywW7cqGHhis0caWG2bGaaG ypaiaaicdacaaISaaabaGaeq4UdWMaamivaiabgUcaRiabfs5aejaa dsfacaaI9aGaaGimaiaaiYcaaeaacqaH3oaAcaWGcbGaey4kaSIaeu iLdqKaamOqaiaai2dacaaIWaGaaGilaiaaywW7cqGHhis0caWGcbGa aGypaiaaicdaaaaaaa@5EE8@  (5)

с соответствующими граничными условиями. Расчет собственных значений и собственных мод этих задач подробно описан в [7].

Операторы этих задач самосопряжены относительно скалярных произведений:

v 1 , v 2 v = r i r1 v 1 v 2 dV= r i 1 r 2 dr 0 π sinθdθ π π v 1 v 2 dφ, T 1 , T 2 T = r i r1 T 1 T 2 dV= r i 1 r 2 dr 0 π sinθdθ π π T 1 T 2 dφ, B 1 , B 2 B = 0r1 B 1 B 2 dV= 0 1 r 2 dr 0 π sinθdθ π π B 1 B 2 dφ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaa qaamaaamaabaGaamODamaaBaaaleaacaaIXaaabeaakiaaiYcacaWG 2bWaaSbaaSqaaiaaikdaaeqaaaGccaGLPmIaayPkJaWaaSbaaSqaai aadAhaaeqaaOGaaGypamaapmfabeWcbaGaamOCamaaBaaabaGaamyA aaqabaGaeyizImQaamOCaiabgsMiJkaaigdaaeqaniabgUIiYlabgU IiYlabgUIiYdGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamODamaa BaaaleaacaaIYaaabeaakiaayIW7caWGKbGaamOvaiaai2dadaWdXa qabSqaaiaadkhadaWgaaqaaiaadMgaaeqaaaqaaiaaigdaa0Gaey4k IipakiaadkhadaahaaWcbeqaaiaaikdaaaGccaaMi8Uaamizaiaadk hadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipakiGacoha caGGPbGaaiOBaiabeI7aXjaayIW7caWGKbGaeqiUde3aa8qmaeqale aacqGHsislcqaHapaCaeaacqaHapaCa0Gaey4kIipakiaadAhadaWg aaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaG jcVlaadsgacqaHgpGAcaaISaaabaWaaaWaaeaacaWGubWaaSbaaSqa aiaaigdaaeqaaOGaaGilaiaadsfadaWgaaWcbaGaaGOmaaqabaaaki aawMYicaGLQmcadaWgaaWcbaGaamivaaqabaGccaaI9aWaa8Wuaeqa leaacaWGYbWaaSbaaeaacaWGPbaabeaacqGHKjYOcaWGYbGaeyizIm QaaGymaaqab0Gaey4kIiVaey4kIiVaey4kIipakiaadsfadaWgaaWc baGaaGymaaqabaGccaWGubWaaSbaaSqaaiaaikdaaeqaaOGaaGjcVl aadsgacaWGwbGaaGypamaapedabeWcbaGaamOCamaaBaaabaGaamyA aaqabaaabaGaaGymaaqdcqGHRiI8aOGaamOCamaaCaaaleqabaGaaG OmaaaakiaayIW7caWGKbGaamOCamaapedabeWcbaGaaGimaaqaaiab ec8aWbqdcqGHRiI8aOGaci4CaiaacMgacaGGUbGaeqiUdeNaaGjcVl aadsgacqaH4oqCdaWdXaqabSqaaiabgkHiTiabec8aWbqaaiabec8a WbqdcqGHRiI8aOGaamivamaaBaaaleaacaaIXaaabeaakiaadsfada WgaaWcbaGaaGOmaaqabaGccaaMi8UaamizaiabeA8aQjaaiYcaaeaa daaadaqaaiaadkeadaWgaaWcbaGaaGymaaqabaGccaaISaGaamOqam aaBaaaleaacaaIYaaabeaaaOGaayzkJiaawQYiamaaBaaaleaacaWG cbaabeaakiaai2dadaWdtbqabSqaaiaaicdacqGHKjYOcaWGYbGaey izImQaaGymaaqab0Gaey4kIiVaey4kIiVaey4kIipakiaadkeadaWg aaWcbaGaaGymaaqabaGccaWGcbWaaSbaaSqaaiaaikdaaeqaaOGaaG jcVlaadsgacaWGwbGaaGypamaapedabeWcbaGaaGimaaqaaiaaigda a0Gaey4kIipakiaadkhadaahaaWcbeqaaiaaikdaaaGccaaMi8Uaam izaiaadkhadaWdXaqabSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipa kiGacohacaGGPbGaaiOBaiabeI7aXjaayIW7caWGKbGaeqiUde3aa8 qmaeqaleaacqGHsislcqaHapaCaeaacqaHapaCa0Gaey4kIipakiaa dkeadaWgaaWcbaGaaGymaaqabaGccaWGcbWaaSbaaSqaaiaaikdaae qaaOGaaGjcVlaadsgacqaHgpGAcaaISaaaaaaa@0082@  (6)

Системы собственных мод полны и ортогональны. Их можно считать нормированными.

Каждая мода скорости и магнитного поля определяется мультииндексами вида (k,n,m,type) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU gacaaISaGaamOBaiaaiYcacaWGTbGaaGilaiaadshacaWG5bGaamiC aiaadwgacaaIPaaaaa@4239@ , где k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@38F7@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@  и m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@38F9@  соответствуют дискретизации спектра по r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@ , θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@39BD@  и φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@39C4@  соответственно, а type MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaadM hacaWGWbGaamyzaaaa@3BDD@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  бинарный индекс типа моды: тороидальная или полоидальная. Температурные моды определяются мультииндексами (k,n,m) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU gacaaISaGaamOBaiaaiYcacaWGTbGaaGykaaaa@3DAD@ .

Подстановка разложений (4) в уравнения геодинамо и применение процедуры Галeркина дает динамическую систему для амплитуд:

d β l dt = i,j=1 L max B lij β i β j μ l β l + E 1 i=1 L max E li β i + RaPr 1 i=1 S max C li α i + i,j=1 P max Q lij γ i γ j , l=1,, L max , d α s dt = i,j=1 L max , S max F sij β i α j + i=1 L max H si β i Pr 1 λ s α s ,s=1,, S max , d γ p dt = i,j=1 L max , P max W pij β i γ j + R α i=1 P max W pij α γ i Pm 1 η p γ p ,p=1,, P max . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabqGaaa aabaWaaSaaaeaacaWGKbGaeqOSdi2aaSbaaSqaaiaadYgaaeqaaaGc baGaamizaiaadshaaaGaaGypamaaqahabeWcbaGaamyAaiaaiYcaca WGQbGaaGypaiaaigdaaeaacaWGmbWaaSbaaeaaciGGTbGaaiyyaiaa cIhaaeqaaaqdcqGHris5aOGaamOqamaaBaaaleaacaWGSbGaamyAai aadQgaaeqaaOGaeqOSdi2aaSbaaSqaaiaadMgaaeqaaOGaeqOSdi2a aSbaaSqaaiaadQgaaeqaaOGaeyOeI0IaeqiVd02aaSbaaSqaaiaadY gaaeqaaOGaeqOSdi2aaSbaaSqaaiaadYgaaeqaaOGaey4kaSIaaeyr amaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqahabeWcbaGaamyAai aai2dacaaIXaaabaGaamitamaaBaaabaGaciyBaiaacggacaGG4baa beaaa0GaeyyeIuoakiaadweadaWgaaWcbaGaamiBaiaadMgaaeqaaO GaeqOSdi2aaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaaeOuaiaabgga caqGqbGaaeOCamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqahabe WcbaGaamyAaiaai2dacaaIXaaabaGaam4uamaaBaaabaGaciyBaiaa cggacaGG4baabeaaa0GaeyyeIuoakiaadoeadaWgaaWcbaGaamiBai aadMgaaeqaaOGaeqySde2aaSbaaSqaaiaadMgaaeqaaOGaey4kaSYa aabCaeqaleaacaWGPbGaaGilaiaadQgacaaI9aGaaGymaaqaaiaadc fadaWgaaqaaiGac2gacaGGHbGaaiiEaaqabaaaniabggHiLdGccaWG rbWaaSbaaSqaaiaadYgacaWGPbGaamOAaaqabaGccqaHZoWzdaWgaa WcbaGaamyAaaqabaGccqaHZoWzdaWgaaWcbaGaamOAaaqabaGccaaI SaaabaaabaGaamiBaiaai2dacaaIXaGaaGilaiablAciljaaiYcaca WGmbWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaGccaaISaaabaaa baWaaSaaaeaacaWGKbGaeqySde2aaSbaaSqaaiaadohaaeqaaaGcba GaamizaiaadshaaaGaaGypamaaqahabeWcbaGaamyAaiaaiYcacaWG QbGaaGypaiaaigdaaeaacaWGmbWaaSbaaeaaciGGTbGaaiyyaiaacI haaeqaaiaaiYcacaWGtbWaaSbaaeaaciGGTbGaaiyyaiaacIhaaeqa aaqdcqGHris5aOGaamOramaaBaaaleaacaWGZbGaamyAaiaadQgaae qaaOGaeqOSdi2aaSbaaSqaaiaadMgaaeqaaOGaeqySde2aaSbaaSqa aiaadQgaaeqaaOGaey4kaSYaaabCaeqaleaacaWGPbGaaGypaiaaig daaeaacaWGmbWaaSbaaeaaciGGTbGaaiyyaiaacIhaaeqaaaqdcqGH ris5aOGaamisamaaBaaaleaacaWGZbGaamyAaaqabaGccqaHYoGyda WgaaWcbaGaamyAaaqabaGccqGHsislcaqGqbGaaeOCamaaCaaaleqa baGaeyOeI0IaaGymaaaakiabeU7aSnaaBaaaleaacaWGZbaabeaaki abeg7aHnaaBaaaleaacaWGZbaabeaakiaaiYcacaaMf8Uaam4Caiaa i2dacaaIXaGaaGilaiablAciljaaiYcacaWGtbWaaSbaaSqaaiGac2 gacaGGHbGaaiiEaaqabaGccaaISaaabaaabaWaaSaaaeaacaWGKbGa eq4SdC2aaSbaaSqaaiaadchaaeqaaaGcbaGaamizaiaadshaaaGaaG ypamaaqahabeWcbaGaamyAaiaaiYcacaWGQbGaaGypaiaaigdaaeaa caWGmbWaaSbaaeaaciGGTbGaaiyyaiaacIhaaeqaaiaaiYcacaWGqb WaaSbaaeaaciGGTbGaaiyyaiaacIhaaeqaaaqdcqGHris5aOGaam4v amaaBaaaleaacaWGWbGaamyAaiaadQgaaeqaaOGaeqOSdi2aaSbaaS qaaiaadMgaaeqaaOGaeq4SdC2aaSbaaSqaaiaadQgaaeqaaOGaey4k aSIaaeOuamaaBaaaleaacqaHXoqyaeqaaOWaaabCaeqaleaacaWGPb GaaGypaiaaigdaaeaacaWGqbWaaSbaaeaaciGGTbGaaiyyaiaacIha aeqaaaqdcqGHris5aOGaam4vamaaDaaaleaacaWGWbGaamyAaiaadQ gaaeaacqaHXoqyaaGccqaHZoWzdaWgaaWcbaGaamyAaaqabaGccqGH sislcaqGqbGaaeyBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabeE 7aOnaaBaaaleaacaWGWbaabeaakiabeo7aNnaaBaaaleaacaWGWbaa beaakiaaiYcacaaMf8UaamiCaiaai2dacaaIXaGaaGilaiablAcilj aaiYcacaWGqbWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaGccaaI Uaaabaaaaaaa@2A37@  (7)

В этой системе μ l >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadYgaaeqaaOGaaGOpaiaaicdaaaa@3C66@ , λ s >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadohaaeqaaOGaaGOpaiaaicdaaaa@3C6B@  и η p >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaadchaaeqaaOGaaGOpaiaaicdaaaa@3C60@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  собственные значения, а прописные буквы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  постоянные коэффициенты Галeркина, определяемые скалярными произведениями:

B lij = v i v j , v l v , E li =2 e z × v i , v l v , C li = T i r, v l v , Q lij = rot B i × B j , v l v , F sij = v i T j , T s T , H si = r i 1 r i r 2 v i e r , T s T , W pij = rot v i × B j , B s v , W pi α = rot α(r) B i , B s v . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadkeadaWgaaWcbaGaamiBaiaadMgacaWGQbaabeaakiaai2da cqGHsislcqGHPms4daqadaqaaiaadAhadaWgaaWcbaGaamyAaaqaba GccqGHhis0aiaawIcacaGLPaaacaWG2bWaaSbaaSqaaiaadQgaaeqa aOGaaGilaiaadAhadaWgaaWcbaGaamiBaaqabaGccqGHQms8daWgaa WcbaGaamODaaqabaGccaaISaGaaGzbVlaadweadaWgaaWcbaGaamiB aiaadMgaaeqaaOGaaGypaiabgkHiTiaaikdacqGHPms4caWGLbWaaS baaSqaaiaadQhaaeqaaOGaey41aqRaamODamaaBaaaleaacaWGPbaa beaakiaaiYcacaWG2bWaaSbaaSqaaiaadYgaaeqaaOGaeyOkJe=aaS baaSqaaiaadAhaaeqaaOGaaGilaiaaywW7caWGdbWaaSbaaSqaaiaa dYgacaWGPbaabeaakiaai2dacqGHPms4caWGubWaaSbaaSqaaiaadM gaaeqaaOGaamOCaiaaiYcacaWG2bWaaSbaaSqaaiaadYgaaeqaaOGa eyOkJe=aaSbaaSqaaiaadAhaaeqaaOGaaGilaaqaaaqaaiaadgfada WgaaWcbaGaamiBaiaadMgacaWGQbaabeaakiaai2dacqGHPms4caqG YbGaae4BaiaabshacaWGcbWaaSbaaSqaaiaadMgaaeqaaOGaey41aq RaamOqamaaBaaaleaacaWGQbaabeaakiaaiYcacaWG2bWaaSbaaSqa aiaadYgaaeqaaOGaeyOkJe=aaSbaaSqaaiaadAhaaeqaaOGaaGilai aaywW7caWGgbWaaSbaaSqaaiaadohacaWGPbGaamOAaaqabaGccaaI 9aGaeyOeI0IaeyykJeUaamODamaaBaaaleaacaWGPbaabeaakmaabm aabaGaey4bIeTaamivamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaa wMcaaiaaiYcacaWGubWaaSbaaSqaaiaadohaaeqaaOGaeyOkJe=aaS baaSqaaiaadsfaaeqaaOGaaGilaiaaywW7caWGibWaaSbaaSqaaiaa dohacaWGPbaabeaakiaai2dadaWcaaqaaiaadkhadaWgaaWcbaGaam yAaaqabaaakeaacaaIXaGaeyOeI0IaamOCamaaBaaaleaacaWGPbaa beaaaaGccqGHPms4caWGYbWaaWbaaSqabeaacqGHsislcaaIYaaaaO GaamODamaaBaaaleaacaWGPbaabeaakiaadwgadaWgaaWcbaGaamOC aaqabaGccaaISaGaamivamaaBaaaleaacaWGZbaabeaakiabgQYiXp aaBaaaleaacaWGubaabeaakiaaiYcaaeaaaeaacaWGxbWaaSbaaSqa aiaadchacaWGPbGaamOAaaqabaGccaaI9aGaeyykJeUaaeOCaiaab+ gacaqG0bWaaeWaaeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaOGaey41 aqRaamOqamaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaiaaiY cacaWGcbWaaSbaaSqaaiaadohaaeqaaOGaeyOkJe=aaSbaaSqaaiaa dAhaaeqaaOGaaGilaiaadEfadaqhaaWcbaGaamiCaiaadMgaaeaacq aHXoqyaaGccaaI9aGaeyykJeUaaeOCaiaab+gacaqG0bWaaeWaaeaa cqaHXoqycaaIOaGaamOCaiaaiMcacaWGcbWaaSbaaSqaaiaadMgaae qaaaGccaGLOaGaayzkaaGaaGilaiaadkeadaWgaaWcbaGaam4Caaqa baGccqGHQms8daWgaaWcbaGaamODaaqabaGccaaIUaaabaaaaaaa@E843@  (8)

Спектральная модель геодинамо MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  это набор мод и система уравнений (7). Если число мод невелико, говорят о маломодовой модели.

В модель вводится эредитарное подавление α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  -эффекта энергией поля и случайное возмущение α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  -эффекта ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@  в виде:

R α R α 1+ξ(t) 1+u(t) ,u(t)= 1 T K 0 t K tτ T K p=1 P max γ p 2 (τ)dτ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaabkfadaWgaaWcbaGaeqySdegabeaakiablAAiHnaalaaabaGa aeOuamaaBaaaleaacqaHXoqyaeqaaOWaaeWaaeaacaaIXaGaey4kaS IaeqOVdGNaaGikaiaadshacaaIPaaacaGLOaGaayzkaaaabaGaaGym aiabgUcaRiaadwhacaaIOaGaamiDaiaaiMcaaaGaaGilaiaaywW7ca WG1bGaaGikaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqaaiaa dsfadaWgaaWcbaGaam4saaqabaaaaOWaa8qmaeqaleaacaaIWaaaba GaamiDaaqdcqGHRiI8aOGaam4samaabmaabaWaaSaaaeaacaWG0bGa eyOeI0IaeqiXdqhabaGaamivamaaBaaaleaacaWGlbaabeaaaaaaki aawIcacaGLPaaadaaeWbqabSqaaiaadchacaaI9aGaaGymaaqaaiaa dcfadaWgaaqaaiaad2gacaWGHbGaamiEaaqabaaaniabggHiLdGccq aHZoWzdaqhaaWcbaGaamiCaaqaaiaaikdaaaGccaaIOaGaeqiXdqNa aGykaiaayIW7caWGKbGaeqiXdqNaaGilaaqaaaaaaaa@7490@  (9)

где безразмерная K(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGykaaaa@3B35@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  ядро функционала подавления со свойствами K(t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGykaiabgwMiZkaaicdaaaa@3DB5@ , K(+)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacqGHRaWkcqGHEisPcaaIPaGaaGypaiaaicdaaaa@3E10@  и max t0 K(t)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqale aacaWG0bGaeyyzImRaaGimaaqabOqaaiGac2gacaGGHbGaaiiEaaaa caWGlbGaaGikaiaadshacaaIPaGaaGypaiaaigdaaaa@4347@ . Параметр T K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGlbaabeaaaaa@39DC@  задает временной масштаб ядра.

Для численного решения система уравнений (7)-(9) дополняется начальными значениями для амплитуд мод:

β l (0)= β l 0 , α s (0)= α s 0 , γ p (0)= γ p 0 , l=1,, L max ,s=1,, S max ,p=1,, P max . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabek7aInaaBaaaleaacaWGSbaabeaakiaaiIcacaaIWaGaaGyk aiaai2dacqaHYoGydaqhaaWcbaGaamiBaaqaaiaaicdaaaGccaaISa GaaGzbVlabeg7aHnaaBaaaleaacaWGZbaabeaakiaaiIcacaaIWaGa aGykaiaai2dacqaHXoqydaqhaaWcbaGaam4CaaqaaiaaicdaaaGcca aISaGaaGzbVlabeo7aNnaaBaaaleaacaWGWbaabeaakiaaiIcacaaI WaGaaGykaiaai2dacqaHZoWzdaqhaaWcbaGaamiCaaqaaiaaicdaaa GccaaISaaabaaabaGaamiBaiaai2dacaaIXaGaaGilaiablAciljaa iYcacaWGmbWaaSbaaSqaaiaad2gacaWGHbGaamiEaaqabaGccaaISa GaaGzbVlaadohacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaam4u amaaBaaaleaacaWGTbGaamyyaiaadIhaaeqaaOGaaGilaiaaywW7ca WGWbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiaadcfadaWgaaWc baGaamyBaiaadggacaWG4baabeaakiaai6caaeaaaaaaaa@78F2@  (10)

Стохастический процесс ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@  описывает влияние когерентных структур, спонтанно образованных мелкомасштабными модами, не учитываемыми явно в модели. В зависимости от морфологии каждой структуры она может как усиливать, так и ослаблять генерацию поля, а среднее значение этого влияния должно быть равно нулю.

Опишем модельную структуру этого процесса. Предположим, что k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@38F7@  -ая когерентная структура ( k=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSeaaa@3DC3@  ) спонтанно образуется в случайный момент времени φ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadUgaaeqaaaaa@3AE0@  и саморазрушается в случайный момент времени θ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadUgaaeqaaaaa@3AD9@ . Возможностью одновременного существования двух или более структур пренебрегаем. Пусть также θ 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaicdaaeqaaOGaaGypaiaaicdaaaa@3C2E@ .

Тогда случайное время ожидания структуры τ k W = φ k θ k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGxbaaaOGaaGypaiabeA8aQnaaBaaaleaa caWGRbaabeaakiabgkHiTiabeI7aXnaaBaaaleaacaWGRbGaeyOeI0 IaaGymaaqabaaaaa@44E0@ , а случайное время ее существования τ k E = θ k φ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGfbaaaOGaaGypaiabeI7aXnaaBaaaleaa caWGRbaabeaakiabgkHiTiabeA8aQnaaBaaaleaacaWGRbaabeaaaa a@4326@ . Интенсивность влияния k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@38F7@  -ой структуры на генерацию поля описывается величинами ξ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadUgaaeqaaaaa@3AE6@ . Все эти три класса величины предполагаются независимыми между собой при различных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@38F7@  и одинаково распределенными в пределах одного класса.

Величины ξ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadUgaaeqaaaaa@3AE6@  гауссовские N(0, σ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFneVtcaaIOaGaaGim aiaaiYcacqaHdpWCdaahaaWcbeqaaiaaikdaaaGccaaIPaaaaa@48ED@ , времена ожидания τ k W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGxbaaaaaa@3BC5@  распределены по степенному закону с плотностью

p W (t)= ν1 c T W 1+ t c T W ν , T W >0,c= 2 1 ν1 1 1 ,ν>1,t0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaadchadaWgaaWcbaGaam4vaaqabaGccaaIOaGaamiDaiaaiMca caaI9aWaaSaaaeaacqaH9oGBcqGHsislcaaIXaaabaGaam4yaiaads fadaahaaWcbeqaaiaadEfaaaaaaOWaaeWaaeaacaaIXaGaey4kaSYa aSaaaeaacaWG0baabaGaam4yaiaadsfadaahaaWcbeqaaiaadEfaaa aaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcqaH9oGBaaGc caaISaGaaGzbVlaadsfadaahaaWcbeqaaiaadEfaaaGccaaI+aGaaG imaiaaiYcacaaMf8Uaam4yaiaai2dadaqadaqaaiaaikdadaahaaWc beqaamaalaaabaGaaGymaaqaaiabe27aUjabgkHiTiaaigdaaaaaaO GaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0Ia aGymaaaakiaaiYcacaaMf8UaeqyVd4MaaGOpaiaaigdacaaISaGaaG zbVlaadshacqGHLjYScaaIWaGaaGilaaqaaaaaaaa@6D27@  (11)

а времена существования τ k E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGfbaaaaaa@3BB3@  распределены по показательному закону с плотностью

p E (t)= ln2 T E exp ln2 T E t , T E >0,t0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiaadchadaWgaaWcbaGaamyraaqabaGccaaIOaGaamiDaiaaiMca caaI9aWaaSaaaeaaciGGSbGaaiOBaiaaikdaaeaacaWGubWaaWbaaS qabeaacaWGfbaaaaaakiGacwgacaGG4bGaaiiCamaabmaabaGaeyOe I0YaaSaaaeaaciGGSbGaaiOBaiaaikdaaeaacaWGubWaaWbaaSqabe aacaWGfbaaaaaakiaadshaaiaawIcacaGLPaaacaaISaGaaGzbVlaa dsfadaahaaWcbeqaaiaadweaaaGccaaI+aGaaGimaiaaiYcacaaMf8 UaamiDaiabgwMiZkaaicdacaaIUaaabaaaaaaa@58A0@  (12)

Параметры T W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaam4vaaaaaaa@39E9@  и T E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaamyraaaaaaa@39D7@  имеют смысл медиан соответствующих случайных величин, принимаемых в качестве характерных времен ожидания и существования. Использование медиан вместо традиционных математических ожиданий в качестве характерных значений связано с тем, что у степенного распределения (11) при ν2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4Maey izImQaaGOmaaaa@3C30@  математическое ожидание бесконечно.

Случайных процесс ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@  определяется следующим образом:

ξ(t)= k=1 + ξ k H(t τ k )H(t θ k ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiabe67a4jaaiIcacaWG0bGaaGykaiaai2dadaaeWbqabSqaaiaa dUgacaaI9aGaaGymaaqaaiabgUcaRiabg6HiLcqdcqGHris5aOGaeq OVdG3aaSbaaSqaaiaadUgaaeqaaOWaamWaaeaacaWGibGaaGikaiaa dshacqGHsislcqaHepaDdaWgaaWcbaGaam4AaaqabaGccaaIPaGaey OeI0IaamisaiaaiIcacaWG0bGaeyOeI0IaeqiUde3aaSbaaSqaaiaa dUgaaeqaaOGaaGykaaGaay5waiaaw2faaiaaiYcaaeaaaaaaaa@5882@  (13)

где H() MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaaiI cacqGHflY1caaIPaaaaa@3C83@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  функция Хевисайда. Он представляет собой последовательность прямоугольных импульсов с амплитудами ξ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadUgaaeqaaaaa@3AE6@ , возникающих в моменты φ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadUgaaeqaaaaa@3AE0@  и исчезающих в моменты θ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadUgaaeqaaaaa@3AD9@ . Между импульсами процесс нулевой.

Варьируя наборы базисных мод, представляемых мультииндексами, и типы ядер, получаем широкий класс спектральных эредитарных моделей.

Структура комплекса

Представляемый вычислительный комплекс моделирования геодинамо предназначен для составления уравнений (7) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (9), т.е. расчета коэффициентов Галeркина и собственных значений, генерации реализаций шума ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@  и численного решения уравнений с заданными начальными значениями амплитуд.

Структура комплекса представлена на рис. 1.

 

Рис. 1. Структура комплекса.

Figure 1. Structure of the complex.

 

Приведем здесь общее описание комплекса, а далее опишем каждый расчетный модуль. В пополняемых файлах коэффициентов хранятся значения коэффициентов Галеркина, идентификаторами которых являются мультииндексы мод.

В пополняемых файлах параметров мод хранятся собственные значения и числовые параметры мод с идентификаторами в виде мультииндексов.

Исходными данными на входе являются параметры подобия, количества мод L max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BD9@ , S max x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaOGaamiEaaaa@3CE7@ , P max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BDD@ , тип и параметры ядра K(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGykaaaa@3B35@ , параметры процесса ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@ , время моделирования T max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BE1@  и шаг временной сетки h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@38F4@ .

Общая схема работы следующая:

  1. По заданным мультииндексам идет обращение в файлы коэффициентов Галеркина. Если все необходимые коэффциенты в файлах есть, они передаются в модули численного решения. Если каких-то коэффициентов нет, соответствующие мультииндексы передаются на вход модуля расчета коэффициентов.
  2. Модуль расчета коэффициентов обращается в файлы параметров мод по заданным мультииндексам. Если параметры всех необходимых мод в файлах есть, производится расчет коэффициентов, они дописываются в файл и передаются в модули численного решения. Если параметров каких-либо мод нет, соответствующие мультииндексы передаются в модуль расчета параметров мод.
  3. Модуль расчета параметров проводит вычисления для заданных мультииндексов, пополняет файлы параметров мод и передает параметры в модуль расчета коэффициентов Галеркина.
  4. По значениям параметров на входе комплекса и коэффициентам Галеркина как по входным данным работает один из двух модулей численного решения. Выбор одного из двух типов определяется типом ядра подавления. Подробнее это описано ниже в работе.
  5. В процессе работы на каждом шаге по времени модуль численного решения обращается к модулю генерации шума за реализацией очередного шумового отсчета.
  6. Результатом работы является файл временных рядов решений уравнений модели. Структура этого файла описана ниже.

Из такой организации работы видно, что в процессе эксплуатации будет происходить пополнение файлов параметров мод и коэффициентов, поэтому обращение к модулям их расчета будет происходить все реже.

Модули расчет параметров базисных мод

Собственные тороидальные моды скорости и магнитной индукции v knm T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDa aaleaacaWGRbGaamOBaiaad2gaaeaacaWGubaaaaaa@3CDD@  и B knm T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaDa aaleaacaWGRbGaamOBaiaad2gaaeaacaWGubaaaaaa@3CA9@ , собственные полоидальные моды скорости и магнитной индукции v knm P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaDa aaleaacaWGRbGaamOBaiaad2gaaeaacaWGqbaaaaaa@3CD9@  и B knm P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaDa aaleaacaWGRbGaamOBaiaad2gaaeaacaWGqbaaaaaa@3CA5@ , собственные моды температуры T knm MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGRbGaamOBaiaad2gaaeqaaaaa@3BE1@  определяются выражениями

v knm T =rot R kn T (r) Y n m (θ,φ)r , B knm T =rot X kn T (r) Y n m (θ,φ)r , v knm P =rotrot R kn P (r) Y n m (θ,φ)r , B knm P =rotrot X kn P (r) Y n m (θ,φ)r , T knm = Z kn (r) Y n m (θ,φ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmGaaa qaaiaadAhadaqhaaWcbaGaam4Aaiaad6gacaWGTbaabaGaamivaaaa kiaai2dacaqGYbGaae4BaiaabshadaqadaqaaiaadkfadaqhaaWcba Gaam4Aaiaad6gaaeaacaWGubaaaOGaaGikaiaadkhacaaIPaGaamyw amaaDaaaleaacaWGUbaabaGaamyBaaaakiaaiIcacqaH4oqCcaaISa GaeqOXdOMaaGykaiaadkhaaiaawIcacaGLPaaacaaISaGaaGzbVlaa dkeadaqhaaWcbaGaam4Aaiaad6gacaWGTbaabaGaamivaaaakiaai2 dacaqGYbGaae4BaiaabshadaqadaqaaiaadIfadaqhaaWcbaGaam4A aiaad6gaaeaacaWGubaaaOGaaGikaiaadkhacaaIPaGaamywamaaDa aaleaacaWGUbaabaGaamyBaaaakiaaiIcacqaH4oqCcaaISaGaeqOX dOMaaGykaiaadkhaaiaawIcacaGLPaaacaaISaaabaaabaGaamODam aaDaaaleaacaWGRbGaamOBaiaad2gaaeaacaWGqbaaaOGaaGypaiaa bkhacaqGVbGaaeiDaiaayIW7caqGYbGaae4Baiaabshadaqadaqaai aadkfadaqhaaWcbaGaam4Aaiaad6gaaeaacaWGqbaaaOGaaGikaiaa dkhacaaIPaGaamywamaaDaaaleaacaWGUbaabaGaamyBaaaakiaaiI cacqaH4oqCcaaISaGaeqOXdOMaaGykaiaadkhaaiaawIcacaGLPaaa caaISaGaaGzbVlaadkeadaqhaaWcbaGaam4Aaiaad6gacaWGTbaaba Gaamiuaaaakiaai2dacaqGYbGaae4BaiaabshacaaMi8UaaeOCaiaa b+gacaqG0bWaaeWaaeaacaWGybWaa0baaSqaaiaadUgacaWGUbaaba GaamiuaaaakiaaiIcacaWGYbGaaGykaiaadMfadaqhaaWcbaGaamOB aaqaaiaad2gaaaGccaaIOaGaeqiUdeNaaGilaiabeA8aQjaaiMcaca WGYbaacaGLOaGaayzkaaGaaGilaaqaaaqaaiaadsfadaWgaaWcbaGa am4Aaiaad6gacaWGTbaabeaakiaai2dacaWGAbWaaSbaaSqaaiaadU gacaWGUbaabeaakiaaiIcacaWGYbGaaGykaiaadMfadaqhaaWcbaGa amOBaaqaaiaad2gaaaGccaaIOaGaeqiUdeNaaGilaiabeA8aQjaaiM cacaaISaaabaaaaaaa@C088@  (14)

где Y m m (θ,φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaDa aaleaacaWGTbaabaGaamyBaaaakiaaiIcacqaH4oqCcaaISaGaeqOX dOMaaGykaaaa@408E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  сферические гармоники, а функции радиальной переменной r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  задаются в виде

R kn T (r)= A kn T j n μ kn T r + B kn T y n μ kn T r , X kn T (r)= a kn T j n η kn T r + b kn T y n η kn T r , R kn P (r)= C kn 1 j n μ kn P r + C kn 2 y n μ kn P r + C kn 3 r n + C kn 4 r n1 , X kn P (r)= a kn P j n η kn P r + b kn P y n η kn P r , Z kn (r)= a kn j n λ kn r + b kn y n λ kn r . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabuGaaa aabaGaamOuamaaDaaaleaacaWGRbGaamOBaaqaaiaadsfaaaGccaaI OaGaamOCaiaaiMcacaaI9aGaamyqamaaDaaaleaacaWGRbGaamOBaa qaaiaadsfaaaGccaWGQbWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaa daGcaaqaaiabeY7aTnaaDaaaleaacaWGRbGaamOBaaqaaiaadsfaaa aabeaakiaadkhaaiaawIcacaGLPaaacqGHRaWkcaWGcbWaa0baaSqa aiaadUgacaWGUbaabaGaamivaaaakiaadMhadaWgaaWcbaGaamOBaa qabaGcdaqadaqaamaakaaabaGaeqiVd02aa0baaSqaaiaadUgacaWG UbaabaGaamivaaaaaeqaaOGaamOCaaGaayjkaiaawMcaaiaaiYcaae aaaeaacaWGybWaa0baaSqaaiaadUgacaWGUbaabaGaamivaaaakiaa iIcacaWGYbGaaGykaiaai2dacaWGHbWaa0baaSqaaiaadUgacaWGUb aabaGaamivaaaakiaadQgadaWgaaWcbaGaamOBaaqabaGcdaqadaqa amaakaaabaGaeq4TdG2aa0baaSqaaiaadUgacaWGUbaabaGaamivaa aaaeqaaOGaamOCaaGaayjkaiaawMcaaiabgUcaRiaadkgadaqhaaWc baGaam4Aaiaad6gaaeaacaWGubaaaOGaamyEamaaBaaaleaacaWGUb aabeaakmaabmaabaWaaOaaaeaacqaH3oaAdaqhaaWcbaGaam4Aaiaa d6gaaeaacaWGubaaaaqabaGccaWGYbaacaGLOaGaayzkaaGaaGilaa qaaaqaaiaadkfadaqhaaWcbaGaam4Aaiaad6gaaeaacaWGqbaaaOGa aGikaiaadkhacaaIPaGaaGypaiaadoeadaqhaaWcbaGaam4Aaiaad6 gaaeaacaaIXaaaaOGaamOAamaaBaaaleaacaWGUbaabeaakmaabmaa baWaaOaaaeaacqaH8oqBdaqhaaWcbaGaam4Aaiaad6gaaeaacaWGqb aaaaqabaGccaWGYbaacaGLOaGaayzkaaGaey4kaSIaam4qamaaDaaa leaacaWGRbGaamOBaaqaaiaaikdaaaGccaWG5bWaaSbaaSqaaiaad6 gaaeqaaOWaaeWaaeaadaGcaaqaaiabeY7aTnaaDaaaleaacaWGRbGa amOBaaqaaiaadcfaaaaabeaakiaadkhaaiaawIcacaGLPaaacqGHRa WkcaWGdbWaa0baaSqaaiaadUgacaWGUbaabaGaaG4maaaakiaadkha daahaaWcbeqaaiaad6gaaaGccqGHRaWkcaWGdbWaa0baaSqaaiaadU gacaWGUbaabaGaaGinaaaakiaadkhadaahaaWcbeqaaiabgkHiTiaa d6gacqGHsislcaaIXaaaaOGaaGilaaqaaaqaaiaadIfadaqhaaWcba Gaam4Aaiaad6gaaeaacaWGqbaaaOGaaGikaiaadkhacaaIPaGaaGyp aiaadggadaqhaaWcbaGaam4Aaiaad6gaaeaacaWGqbaaaOGaamOAam aaBaaaleaacaWGUbaabeaakmaabmaabaWaaOaaaeaacqaH3oaAdaqh aaWcbaGaam4Aaiaad6gaaeaacaWGqbaaaaqabaGccaWGYbaacaGLOa GaayzkaaGaey4kaSIaamOyamaaDaaaleaacaWGRbGaamOBaaqaaiaa dcfaaaGccaWG5bWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaadaGcaa qaaiabeE7aOnaaDaaaleaacaWGRbGaamOBaaqaaiaadcfaaaaabeaa kiaadkhaaiaawIcacaGLPaaacaaISaaabaaabaGaamOwamaaBaaale aacaWGRbGaamOBaaqabaGccaaIOaGaamOCaiaaiMcacaaI9aGaamyy amaaBaaaleaacaWGRbGaamOBaaqabaGccaWGQbWaaSbaaSqaaiaad6 gaaeqaaOWaaeWaaeaadaGcaaqaaiabeU7aSnaaBaaaleaacaWGRbGa amOBaaqabaaabeaakiaadkhaaiaawIcacaGLPaaacqGHRaWkcaWGIb WaaSbaaSqaaiaadUgacaWGUbaabeaakiaadMhadaWgaaWcbaGaamOB aaqabaGcdaqadaqaamaakaaabaGaeq4UdW2aaSbaaSqaaiaadUgaca WGUbaabeaaaeqaaOGaamOCaaGaayjkaiaawMcaaiaai6caaeaaaaaa aa@F156@  (15)

В формулах (14) и (15) индекс n=1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaGaaGilaiaaikdacaaISaGaeSOjGSeaaa@3DC6@  у мод скорости и магнитного поля, и n=0,1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIWaGaaGilaiaaigdacaaISaGaaGOmaiaaiYcacqWIMaYsaaa@3F36@  у мод температуры. Индексы k=0,1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIWaGaaGilaiaaigdacaaISaGaaGOmaiaaiYcacqWIMaYsaaa@3F33@  и m=n,,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaai2 dacqGHsislcaWGUbGaaGilaiablAciljaaiYcacaWGUbaaaa@3F21@ . Положительные μ kn T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aa0 baaSqaaiaadUgacaWGUbaabaGaamivaaaaaaa@3CA6@ , μ kn P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aa0 baaSqaaiaadUgacaWGUbaabaGaamiuaaaaaaa@3CA2@ , η kn T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aa0 baaSqaaiaadUgacaWGUbaabaGaamivaaaaaaa@3C9C@ , η kn P MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aa0 baaSqaaiaadUgacaWGUbaabaGaamiuaaaaaaa@3C98@  и λ kn MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgacaWGUbaabeaaaaa@3BCA@  являются собственными значениями соответствующих мод, а прочие коэффициенты в (15) определяются из соответствующих граничных и нормировочных условий. Эти условия ставятся на функции (15) в результате применения условий (3) к модами типа (14). Уравнения на собственные значения и нормировочные условия приведены в работе [7].

Видно, что расчет собственных мод сводится к расчету собственных значений и коэффициентов в выражениях (15). Именно эти вычисления и проводит модуль расчета базисных мод.

Уравнения на собственные значения очень громоздкие, как и нормировочные условия, имеющие интегральную форму. Кроме того, нормировочные интегралы для магнитных мод являются несобственными второго рода. Поэтому модуль разработан в пакете Maple (лицензия 910346) и сочетает в себе символьные и численные вычисления. Технология расчета параметров мод с помощью Maple очень подробно описана в работе [7], поэтому здесь ограничимся общей схемой работы модуля.

На входе модуля: массивы мультииндексов мод скорости, температуры и магнитной индукции, для которых необходимо рассчитать собственные значения и коэффициенты из (15).

Схема работы модуля:

  1. Программно формируется выражение радиальной функции моды.
  2. Аналитически вычисляется норма с неопределенными собственными значениями и коэффициентами.
  3. Программно формируется выражение левой части уравнения на собственные значения.
  4. Численно решается уравнение, находятся собственные значения.
  5. Численно определяются коэффициенты моды.
  6. Собственные значения и коэффициенты подставляются в выражение для нормы и производится пересчет коэффициентов для получения единичной нормы.

На выходе модуля: массивы собственных значений и параметров радиальных функций из (15).

Модуль расчета коэффициентов Галеркина

Коэффициенты Галеркина представляют собой интегралы по объему жидкого ядра от очень громоздких мультипликативных комбинаций базисных мод и операторов векторного анализа в сферических координатах. Сами моды сложным образом выражаются через сферические гармоники (по переменным θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@39BD@  и φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@39C4@  ) и сферические функции Бесселя (по радиальной переменной r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  ). Все это в совокупности приводит к очень сложным подынтегральным выражениям, которые проблематично даже безошибочно ввести вручную в код расчетной программы.

По этой причине модуль также реализован в пакете Maple на основе сочетания символьных и численных вычислений. Этот пакет содержит библиотеку VectorCalculus, в которой реализованы стандартные операции векторного анализа в различных системах координат, в том числе и в сферических. Использование комбинированных типов вычислений позволяет также вести частично аналитическое интегрирование, что повышает надежность расчета коэффициентов.

Технология расчета коэффициентов очень подробно описана в работе [7], где приведены даже ключевые фрагменты кода Maple, поэтому здесь ограничимся описанием общей схемы работы модуля.

На входе модуля: массивы мультииндексов мод скорости, температуры и магнитной индукции, для которых необходимо рассчитать коэффициенты Галеркина.

Схема работы модуля:

  1. На основе значений мультииндексов и общих формул (14) программно вычисляются алгебраические выражения мод v l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGSbaabeaaaaa@3A1F@ , T s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGZbaabeaaaaa@3A04@ , B p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGWbaabeaaaaa@39EF@  с неопределенными радиальными функциями R l (r) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGSbaabeaakiaaiIcacaWGYbGaaGykaaaa@3C61@ , Z s (r) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGZbaabeaakiaaiIcacaWGYbGaaGykaaaa@3C70@ , X p (r) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGWbaabeaakiaaiIcacaWGYbGaaGykaaaa@3C6B@ . Зависимости от θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdehaaa@39BD@  и φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@39C4@  в этих выражениях будут заданы явно.
  2. Программно формируются подынтегральные выражения для коэффициентов Галеркина (8).
  3. Выполняется аналитическое интегрирование по поверхности сферы (θ,φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabeI 7aXjaaiYcacqaHgpGAcaaIPaaaaa@3D95@ . Результатом этого интегрирования будет либо нуль, либо выражения, зависящие от переменной r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@ , неопределенных функций R l (r) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGSbaabeaakiaaiIcacaWGYbGaaGykaaaa@3C61@ , Z s (r) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGZbaabeaakiaaiIcacaWGYbGaaGykaaaa@3C70@ , X p (r) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaWGWbaabeaakiaaiIcacaWGYbGaaGykaaaa@3C6B@  и их производных.
  4. В случае ненулевого результата подставляются явные выражения для радиальных функций (15) с числовыми значениями параметров мод и выполняется численное интегрирование по радиальной переменной.

На выходе модуля: массивы числовых значений коэффициентов Галeркина.

Необходимо сделать следующее замечание. Каждый коэффициент Галеркина имеет смысл меры взаимодействия мод в процессе, связанном с соответствующим членом уравнений геодинамо. Например W sij MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGZbGaamyAaiaadQgaaeqaaaaa@3BE4@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  это мера эффективности генерации моды B s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGZbaabeaaaaa@39F2@  из моды B j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGQbaabeaaaaa@39E9@  за счет моды скорости v i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbaabeaaaaa@3A1C@ . Аналитическое интегрирование позволяет определять точно нулевые коэффициенты, что возможность выделять цепочки взаимодействующих мод.

В настоящее время ведется переработка модуля в свободной системе символьных вычислений SymPy с целью ухода от коммерческого Maple. В SymPy, как и в Maple, реализованы операции векторного анализа в различных ортогональных системах координат.

Модуль генерации шума

Прежде всего опишем формулы, с помощью которых в модуле генерируются реализации случайных величин, определяющих случайный процесс ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@ . Это три типа величин, которые по определению процесса независимы между собой и, соответственно, могут генерироваться независимо друг от друга: случайное время ожидания k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@38F7@  -го прямоугольного импульса τ k W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGxbaaaaaa@3BC5@ , случайное время существования этого импульса τ k E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGfbaaaaaa@3BB3@  и случайная амплитуда импульса ξ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadUgaaeqaaaaa@3AE6@ .

Для генерации случайных времен используется метод обратных функций [12]. Легко получить по схеме этого метода, что величины τ k W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGxbaaaaaa@3BC5@  и τ k E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGfbaaaaaa@3BB3@  при заданных плотностях распределения p W (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGxbaabeaakiaaiIcacaWG0bGaaGykaaaa@3C6C@  (11) и p E (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaWGfbaabeaakiaaiIcacaWG0bGaaGykaaaa@3C5A@  (12) можно генерировать по формулам

τ k W =c T W U 1 1/(1ν) 1 и τ k E = T E ln2 ln U 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiabes8a0naaDaaaleaacaWGRbaabaGaam4vaaaakiaai2dacaWG JbGaamivamaaCaaaleqabaGaam4vaaaakmaabmaabaGaamyvamaaDa aaleaacaaIXaaabaGaaGymaiaai+cacaaIOaGaaGymaiabgkHiTiab e27aUjaaiMcaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaGaaGzbVl aabIdbcaaMf8UaeqiXdq3aa0baaSqaaiaadUgaaeaacaWGfbaaaOGa aGypaiabgkHiTmaalaaabaGaamivamaaCaaaleqabaGaamyraaaaaO qaaiGacYgacaGGUbGaaGOmaaaaciGGSbGaaiOBaiaadwfadaWgaaWc baGaaGOmaaqabaGccaaISaaabaaaaaaa@5CE1@  (16)

где U 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIXaaabeaaaaa@39C8@  и U 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIYaaabeaaaaa@39C9@  равномерно распределены на отрезке 0;1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca aIWaGaaG4oaiaaigdaaiaawUfacaGLDbaaaaa@3C33@  и независимы между собой и при различных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@38F7@ .

Для генерации случайных амплитуд ξ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadUgaaeqaaaaa@3AE6@  используется стандартный метод Бокса-Мюллера [12]:

ξ k =σ 2ln U 3 cos(2π U 4 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeGaaa qaaiabe67a4naaBaaaleaacaWGRbaabeaakiaai2dacqaHdpWCdaGc aaqaaiabgkHiTiaaikdaciGGSbGaaiOBaiaadwfadaWgaaWcbaGaaG 4maaqabaaabeaakiGacogacaGGVbGaai4CaiaaiIcacaaIYaGaeqiW daNaamyvamaaBaaaleaacaaI0aaabeaakiaaiMcacaaISaaabaaaaa aa@4C25@  (17)

где U 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaIZaaabeaaaaa@39CA@  и U 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBa aaleaacaaI0aaabeaaaaa@39CB@  также равномерно распределены на отрезке 0;1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca aIWaGaaG4oaiaaigdaaiaawUfacaGLDbaaaaa@3C33@  и независимы между собой и при различных k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@38F7@ .

Реализующие численное решение уравнений модели (7) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (10) модули комплекса выполняют расчет на временной разностной сетке, причем на каждом шаге вычисляются значения решений в очередном временном узле t n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3BBC@  по их значениям в одном или нескольких предшествующих узлах. Поэтому модуль генерации шума ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@  должен формировать реализацию ξ n+1 =ξ( t n+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaai2dacqaH+oaEcaaI OaGaamiDamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccaaIPa aaaa@443F@  по уже известной ξ n =ξ( t n ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGUbaaaOGaaGypaiabe67a4jaaiIcacaWG0bWaaSba aSqaaiaad6gaaeqaaOGaaGykaaaa@4105@ , т.е. по схеме «от текущего ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@39CA@  в момент t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@ , к следующему ξ next MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGUbGaamyzaiaadIhacaWG0baaaaaa@3DCA@  в момент t next =t+h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa aaleqabaGaamOBaiaadwgacaWG4bGaamiDaaaakiaai2dacaWG0bGa ey4kaSIaamiAaaaa@4099@ ». Именно эта схема и реализуется в модуле генерации шума.

На входе модуль получает следующие параметры и переменные:

  • медианное значение T W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaam4vaaaaaaa@39E9@ , порядок ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@39BF@  и параметр c= 2 1 ν1 1 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dadaqadaqaaiaaikdadaahaaWcbeqaamaalaaabaGaaGymaaqaaiab e27aUjabgkHiTiaaigdaaaaaaOGaeyOeI0IaaGymaaGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@43DA@  степенного распределения (11) времени ожидания импульса;
  • медианное значение T E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaamyraaaaaaa@39D7@  экспоненциального распределения (12) времени существования импульса T E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaamyraaaaaaa@39D7@ ;
  • стандартное отклонение σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@39CA@  нормального распределения амплитуды импульса;
  • булеву переменную текущего состояния процесса pulse (нет импульса MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  «false», есть импульс MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  «true»);
  • текущее состояние процесса ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@39CA@ ;
  • ближайшее время переключения switch_time;
  • временной шаг h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@38F4@  между моментами t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  и t next MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa aaleqabaGaamOBaiaadwgacaWG4bGaamiDaaaaaaa@3D00@ .

На выходе модуль возвращает:

  • булеву переменную состояния процесса pulse в момент t next MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa aaleqabaGaamOBaiaadwgacaWG4bGaamiDaaaaaaa@3D00@  (возможно, измененную по сравнению со входной);
  • следующее состояние процесса ξ next MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGUbGaamyzaiaadIhacaWG0baaaaaa@3DCA@ ;
  • ближайшее (возможно, измененное по сравнению со входным) время переключения switch_time.

Модуль реализован на C++. Псевдокод его основной части представлен в Листинге 1. Предполагается, что функции rnd_ τ E ( T W ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaW baaSqabeaacaWGfbaaaOGaaGikaiaadsfadaahaaWcbeqaaiaadEfa aaGccaaIPaaaaa@3E1E@ , rnd_ τ W (c, T W ,ν) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaW baaSqabeaacaWGxbaaaOGaaGikaiaadogacaaISaGaamivamaaCaaa leqabaGaam4vaaaakiaaiYcacqaH9oGBcaaIPaaaaa@423C@  и rnd_ ξ(σ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiabeo8aZjaaiMcaaaa@3CF2@  генерируют реализации τ k E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGfbaaaaaa@3BB3@ , τ k W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aa0 baaSqaaiaadUgaaeaacaWGxbaaaaaa@3BC5@  и ξ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaadUgaaeqaaaaa@3AE6@  по формулам (16) и (17).

 

Листинг 1. Псевдокод генерации значения шума ξ next MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGUbGaamyzaiaadIhacaWG0baaaaaa@3DCA@  в момент t next MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa aaleqabaGaamOBaiaadwgacaWG4bGaamiDaaaaaaa@3D00@  по известному значению ξ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGhaaa@39CA@  в момент t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@ .

while switch_time ≤ t+h then

if pulse then

ξnext := 0 

switch_time := switch_time+rnd_τW(c,TW,ν)

pulse := false

else

ξnext := rnd_ξ(σ)

switch_time := switch_time+rnd_τE(TE)

pulse := true

end if

end do

 

Реализация переключений процесса в цикле связана с тем, что на малом отрезке [t; t+h] возможны, хотя и маловероятны, несколько таких переключений, поскольку величины τE и τW теоретически могут принимать как угодно близкие к нулю значения. Однако понятно, что в подавляющем большинстве случаев данный цикл на каждом шаге решения по времени будет отрабатывать не более одного раза.

Модуль численного решения уравнений модели для экспоненциального ядра

Модуль реализован на C++ и предназначен для решения уравнений модели (7) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (10) для ядер подавления K(t)= M n t n exp(t),n=0,1,2, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGykaiaai2dacaWGnbWaaSbaaSqaaiaad6gaaeqaaOGa amiDamaaCaaaleqabaGaamOBaaaakiGacwgacaGG4bGaaiiCaiaaiI cacqGHsislcaWG0bGaaGykaiaaiYcacaWGUbGaaGypaiaaicdacaaI SaGaaGymaiaaiYcacaaIYaGaaGilaiablAcilbaa@4E25@ , имеющих экспоненциальный порядок убывания на бесконечности. Здесь M n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGUbaabeaaaaa@39F8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  нормировочный коэффициент, определяемый условием max t0 K(t)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqale aacaWG0bGaeyyzImRaaGimaaqabOqaaiGac2gacaGGHbGaaiiEaaaa caWGlbGaaGikaiaadshacaaIPaGaaGypaiaaigdaaaa@4347@ . Такие ядра далее будем называть экспоненциальными (рис. 2).

 

Рис. 2. Экспоненциальные ядра K(t) =Mntn exp(−t).

[Figure 2. Exponential kernels K(t) =Mntn exp(−t).]

 

Параметр n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@  определяет задержку отклика α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  -эффекта на подавление. Действительно, при n=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIWaaaaa@3A7B@  отклик мгновенный, поскольку K(0)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaaIWaGaaGykaiaai2dacaaIXaaaaa@3C78@  является наибольшим значением функции K(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGykaaaa@3B35@ , и максимальный вклад в интеграл подавления в момент времени t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  дает значение энергии магнитного поля в этот же момент. Если n0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgc Mi5kaaicdaaaa@3B7B@ , то K(0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaaIWaGaaGykaiaai2dacaaIWaaaaa@3C77@  и на подавление в момент t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@3900@  влияют только предшествующие значения энергии поля, т.е. имеет место задержка отклика. Эта задержка тем больше, чем больше n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@ , поскольку максимум функции K(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGykaaaa@3B35@  достигается в точке t=n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai2 dacaWGUbaaaa@3ABA@ . Кроме того, чем больше n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@ , тем ближе к нулю значения K(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGykaaaa@3B35@  в окрестности t=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai2 dacaaIWaaaaa@3A81@ . Все эти рассуждения хорошо иллюстрируются рис. 2, на котором изображены функции M n t n exp(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaWGUbaabeaakiaadshadaahaaWcbeqaaiaad6gaaaGcciGG LbGaaiiEaiaacchacaaIOaGaeyOeI0IaamiDaiaaiMcaaaa@424B@  для нескольких n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@ .

Несложно показать, подобно работам [13, 15], что в случае ядер данного вида интегральное выражение (9), определяющее u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGykaaaa@3B5F@ , оказывается равносильным следующей задаче Коши для функции u(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bGaaGykaaaa@3B5F@ :

T K d dt +1 n+1 u(t)=n! p=1 P max γ p 2 (t),u(0)= u (0)== u (n) (0)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeqaaa qaamaabmaabaGaamivamaaBaaaleaacaWGlbaabeaakmaalaaabaGa amizaaqaaiaadsgacaWG0baaaiabgUcaRiaaigdaaiaawIcacaGLPa aadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaamyDaiaaiIca caWG0bGaaGykaiaai2dacaWGUbGaaGyiamaaqahabeWcbaGaamiCai aai2dacaaIXaaabaGaamiuamaaBaaabaGaamyBaiaadggacaWG4baa beaaa0GaeyyeIuoakiabeo7aNnaaDaaaleaacaWGWbaabaGaaGOmaa aakiaaiIcacaWG0bGaaGykaiaaiYcacaaMf8UaamyDaiaaiIcacaaI WaGaaGykaiaai2daceWG1bGbauaacaaIOaGaaGimaiaaiMcacaaI9a GaeSOjGSKaaGypaiaadwhadaahaaWcbeqaaiaaiIcacaWGUbGaaGyk aaaakiaaiIcacaaIWaGaaGykaiaai2dacaaIWaGaaGOlaaaaaaa@6ACB@  (18)

Стандартным образом вводя переменные u m (t)= u (m) (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGTbaabeaakiaaiIcacaWG0bGaaGykaiaai2dacaWG1bWa aWbaaSqabeaacaaIOaGaamyBaiaaiMcaaaGccaaIOaGaamiDaiaaiM caaaa@4334@ , m=0,1,,n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaai2 dacaaIWaGaaGilaiaaigdacaaISaGaeSOjGSKaaGilaiaad6gaaaa@3F6C@ , получаем тогда, что модель (7) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ (9) с заданными начальными значениями для амплитуд полей (10) становится следующей задачей Коши для нормальной системы уравнений порядка L max + S max + P max +n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaey4kaSIaam4uamaaBaaa leaaciGGTbGaaiyyaiaacIhaaeqaaOGaey4kaSIaamiuamaaBaaale aaciGGTbGaaiyyaiaacIhaaeqaaOGaey4kaSIaamOBaiabgUcaRiaa igdaaaa@48D9@  со случайным возмущением ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@ :

d β l dt = i,j=1 L max B lij β i β j μ l β l + E 1 i=1 L max E li β i + RaPr 1 i=1 S max C li α i + i,j=1 P max Q lij γ i γ j , β l (0)= β l 0 ,l=1,, L max , d α s dt = i,j=1 L max , S max F sij β i α j + i=1 L max H si β i Pr 1 λ s α s , α s (0)= α s 0 ,s=1,, S max , d γ p dt = i,j=1 L max , P max W pij β i γ j + R α 1+ξ(t) 1+ u 0 i=1 P max W pij α γ i Pm 1 η p γ p , γ p (0)= γ p 0 ,p=1,, P max , d u m dt = u m+1 , u m (0)=0,m=0,,n1, d u n dt = m=0 n T K mn1 C n+1 m u m + n! T K n+1 p=1 P max γ p 2 (t), u n (0)=0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabOGaaa aaaeaadaWcaaqaaiaadsgacqaHYoGydaWgaaWcbaGaamiBaaqabaaa keaacaWGKbGaamiDaaaacaaI9aWaaabCaeqaleaacaWGPbGaaGilai aadQgacaaI9aGaaGymaaqaaiaadYeadaWgaaqaaiGac2gacaGGHbGa aiiEaaqabaaaniabggHiLdGccaWGcbWaaSbaaSqaaiaadYgacaWGPb GaamOAaaqabaGccqaHYoGydaWgaaWcbaGaamyAaaqabaGccqaHYoGy daWgaaWcbaGaamOAaaqabaGccqGHsislcqaH8oqBdaWgaaWcbaGaam iBaaqabaGccqaHYoGydaWgaaWcbaGaamiBaaqabaGccqGHRaWkcaqG fbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabCaeqaleaacaWGPb GaaGypaiaaigdaaeaacaWGmbWaaSbaaeaaciGGTbGaaiyyaiaacIha aeqaaaqdcqGHris5aOGaamyramaaBaaaleaacaWGSbGaamyAaaqaba GccqaHYoGydaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaqGsbGaaeyy aiaabcfacaqGYbWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabCae qaleaacaWGPbGaaGypaiaaigdaaeaacaWGtbWaaSbaaeaaciGGTbGa aiyyaiaacIhaaeqaaaqdcqGHris5aOGaam4qamaaBaaaleaacaWGSb GaamyAaaqabaGccqaHXoqydaWgaaWcbaGaamyAaaqabaGccqGHRaWk daaeWbqabSqaaiaadMgacaaISaGaamOAaiaai2dacaaIXaaabaGaam iuamaaBaaabaGaciyBaiaacggacaGG4baabeaaa0GaeyyeIuoakiaa dgfadaWgaaWcbaGaamiBaiaadMgacaWGQbaabeaakiabeo7aNnaaBa aaleaacaWGPbaabeaakiabeo7aNnaaBaaaleaacaWGQbaabeaakiaa iYcaaeaaaeaacqaHYoGydaWgaaWcbaGaamiBaaqabaGccaaIOaGaaG imaiaaiMcacaaI9aGaeqOSdi2aa0baaSqaaiaadYgaaeaacaaIWaaa aOGaaGilaiaaywW7caWGSbGaaGypaiaaigdacaaISaGaeSOjGSKaaG ilaiaadYeadaWgaaWcbaGaciyBaiaacggacaGG4baabeaakiaaiYca aeaaaeaadaWcaaqaaiaadsgacqaHXoqydaWgaaWcbaGaam4Caaqaba aakeaacaWGKbGaamiDaaaacaaI9aWaaabCaeqaleaacaWGPbGaaGil aiaadQgacaaI9aGaaGymaaqaaiaadYeadaWgaaqaaiGac2gacaGGHb GaaiiEaaqabaGaaGilaiaadofadaWgaaqaaiGac2gacaGGHbGaaiiE aaqabaaaniabggHiLdGccaWGgbWaaSbaaSqaaiaadohacaWGPbGaam OAaaqabaGccqaHYoGydaWgaaWcbaGaamyAaaqabaGccqaHXoqydaWg aaWcbaGaamOAaaqabaGccqGHRaWkdaaeWbqabSqaaiaadMgacaaI9a GaaGymaaqaaiaadYeadaWgaaqaaiGac2gacaGGHbGaaiiEaaqabaaa niabggHiLdGccaWGibWaaSbaaSqaaiaadohacaWGPbaabeaakiabek 7aInaaBaaaleaacaWGPbaabeaakiabgkHiTiaabcfacaqGYbWaaWba aSqabeaacqGHsislcaaIXaaaaOGaeq4UdW2aaSbaaSqaaiaadohaae qaaOGaeqySde2aaSbaaSqaaiaadohaaeqaaOGaaGilaaqaaaqaaiab eg7aHnaaBaaaleaacaWGZbaabeaakiaaiIcacaaIWaGaaGykaiaai2 dacqaHXoqydaqhaaWcbaGaam4CaaqaaiaaicdaaaGccaaISaGaaGzb VlaadohacaaI9aGaaGymaiaaiYcacqWIMaYscaaISaGaam4uamaaBa aaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaaGilaaqaaaqaamaalaaa baGaamizaiabeo7aNnaaBaaaleaacaWGWbaabeaaaOqaaiaadsgaca WG0baaaiaai2dadaaeWbqabSqaaiaadMgacaaISaGaamOAaiaai2da caaIXaaabaGaamitamaaBaaabaGaciyBaiaacggacaGG4baabeaaca aISaGaamiuamaaBaaabaGaciyBaiaacggacaGG4baabeaaa0Gaeyye IuoakiaadEfadaWgaaWcbaGaamiCaiaadMgacaWGQbaabeaakiabek 7aInaaBaaaleaacaWGPbaabeaakiabeo7aNnaaBaaaleaacaWGQbaa beaakiabgUcaRmaalaaabaGaaeOuamaaBaaaleaacqaHXoqyaeqaaO WaaeWaaeaacaaIXaGaey4kaSIaeqOVdGNaaGikaiaadshacaaIPaaa caGLOaGaayzkaaaabaGaaGymaiabgUcaRiaadwhadaWgaaWcbaGaaG imaaqabaaaaOWaaabCaeqaleaacaWGPbGaaGypaiaaigdaaeaacaWG qbWaaSbaaeaaciGGTbGaaiyyaiaacIhaaeqaaaqdcqGHris5aOGaam 4vamaaDaaaleaacaWGWbGaamyAaiaadQgaaeaacqaHXoqyaaGccqaH ZoWzdaWgaaWcbaGaamyAaaqabaGccqGHsislcaqGqbGaaeyBamaaCa aaleqabaGaeyOeI0IaaGymaaaakiabeE7aOnaaBaaaleaacaWGWbaa beaakiabeo7aNnaaBaaaleaacaWGWbaabeaakiaaiYcaaeaaaeaacq aHZoWzdaWgaaWcbaGaamiCaaqabaGccaaIOaGaaGimaiaaiMcacaaI 9aGaeq4SdC2aa0baaSqaaiaadchaaeaacaaIWaaaaOGaaGilaiaayw W7caWGWbGaaGypaiaaigdacaaISaGaeSOjGSKaaGilaiaadcfadaWg aaWcbaGaciyBaiaacggacaGG4baabeaakiaaiYcaaeaaaeaadaWcaa qaaiaadsgacaWG1bWaaSbaaSqaaiaad2gaaeqaaaGcbaGaamizaiaa dshaaaGaaGypaiaadwhadaWgaaWcbaGaamyBaiabgUcaRiaaigdaae qaaOGaaGilaaqaaaqaaiaadwhadaWgaaWcbaGaamyBaaqabaGccaaI OaGaaGimaiaaiMcacaaI9aGaaGimaiaaiYcacaaMf8UaamyBaiaai2 dacaaIWaGaaGilaiablAciljaaiYcacaWGUbGaeyOeI0IaaGymaiaa iYcaaeaaaeaadaWcaaqaaiaadsgacaWG1bWaaSbaaSqaaiaad6gaae qaaaGcbaGaamizaiaadshaaaGaaGypaiabgkHiTmaaqahabeWcbaGa amyBaiaai2dacaaIWaaabaGaamOBaaqdcqGHris5aOGaamivamaaDa aaleaacaWGlbaabaGaamyBaiabgkHiTiaad6gacqGHsislcaaIXaaa aOGaam4qamaaDaaaleaacaWGUbGaey4kaSIaaGymaaqaaiaad2gaaa GccaWG1bWaaSbaaSqaaiaad2gaaeqaaOGaey4kaSYaaSaaaeaacaWG UbGaaGyiaaqaaiaadsfadaqhaaWcbaGaam4saaqaaiaad6gacqGHRa WkcaaIXaaaaaaakmaaqahabeWcbaGaamiCaiaai2dacaaIXaaabaGa amiuamaaBaaabaGaamyBaiaadggacaWG4baabeaaa0GaeyyeIuoaki abeo7aNnaaDaaaleaacaWGWbaabaGaaGOmaaaakiaaiIcacaWG0bGa aGykaiaaiYcaaeaaaeaacaWG1bWaaSbaaSqaaiaad6gaaeqaaOGaaG ikaiaaicdacaaIPaGaaGypaiaaicdacaaISaaabaaaaaaa@A524@  (19)

где C n+1 m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacaWGUbGaey4kaSIaaGymaaqaaiaad2gaaaaaaa@3C7E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  биномиальные коэффициенты.

Модуль строит численное решение задачи Коши (19) с помощью схемы типа «предиктор MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ корректор» Адамса-Башфорта-Моултона 4-го порядка. Для краткости запишем эту задачу в следующем общем виде:

dx dt =f x,ξ(t),a ,x(0)= x 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeqaaa qaamaalaaabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacaaI9aGa amOzamaabmaabaGaamiEaiaaiYcacqaH+oaEcaaIOaGaamiDaiaaiM cacaaISaGaamyyaaGaayjkaiaawMcaaiaaiYcacaaMf8UaamiEaiaa iIcacaaIWaGaaGykaiaai2dacaWG4bWaaWbaaSqabeaacaaIWaaaaO GaaGilaaaaaaa@4F5F@  (20)

где фазовый вектор x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@3904@  состоит из амплитуд α s (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadohaaeqaaOGaaGikaiaadshacaaIPaaaaa@3D32@ , β l (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadYgaaeqaaOGaaGikaiaadshacaaIPaaaaa@3D2D@ , γ p (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadchaaeqaaOGaaGikaiaadshacaaIPaaaaa@3D37@  и переменных u m (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGTbaabeaakiaaiIcacaWG0bGaaGykaaaa@3C87@ , а вектор параметров a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@38ED@  включает в себя все параметры подобия, все параметры процесса ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@  и параметры ядра, все коэффициенты Галeркина.

Пусть f k =f x k , ξ k ,a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaCa aaleqabaGaam4Aaaaakiaai2dacaWGMbWaaeWaaeaacaWG4bWaaWba aSqabeaacaWGRbaaaOGaaGilaiabe67a4naaCaaaleqabaGaam4Aaa aakiaaiYcacaWGHbaacaGLOaGaayzkaaaaaa@44B4@ . Тогда реализованная в модуле разностная схема Адамса-Башфорта-Моултона 4-го порядка записывается в виде [14]:

x pr = x n + h 24 55 f n 59 f n1 +37 f n2 9 f n3 , x n+1 = x n + h 24 9f x pr , ξ n+1 ,a +19 f n 5 f n1 + f n2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiqaaa qaaiaadIhadaahaaWcbeqaaiaadchacaWGYbaaaOGaaGypaiaadIha daahaaWcbeqaaiaad6gaaaGccqGHRaWkdaWcaaqaaiaadIgaaeaaca aIYaGaaGinaaaadaqadaqaaiaaiwdacaaI1aGaamOzamaaCaaaleqa baGaamOBaaaakiabgkHiTiaaiwdacaaI5aGaamOzamaaCaaaleqaba GaamOBaiabgkHiTiaaigdaaaGccqGHRaWkcaaIZaGaaG4naiaadAga daahaaWcbeqaaiaad6gacqGHsislcaaIYaaaaOGaeyOeI0IaaGyoai aadAgadaahaaWcbeqaaiaad6gacqGHsislcaaIZaaaaaGccaGLOaGa ayzkaaGaaGilaaqaaiaadIhadaahaaWcbeqaaiaad6gacqGHRaWkca aIXaaaaOGaaGypaiaadIhadaahaaWcbeqaaiaad6gaaaGccqGHRaWk daWcaaqaaiaadIgaaeaacaaIYaGaaGinaaaadaqadaqaaiaaiMdaca WGMbWaaeWaaeaacaWG4bWaaWbaaSqabeaacaWGWbGaamOCaaaakiaa iYcacqaH+oaEdaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaG ilaiaadggaaiaawIcacaGLPaaacqGHRaWkcaaIXaGaaGyoaiaadAga daahaaWcbeqaaiaad6gaaaGccqGHsislcaaI1aGaamOzamaaCaaale qabaGaamOBaiabgkHiTiaaigdaaaGccqGHRaWkcaWGMbWaaWbaaSqa beaacaWGUbGaeyOeI0IaaGOmaaaaaOGaayjkaiaawMcaaiaai6caaa aaaa@8102@  (21)

Поскольку данная схема является 4-шаговой, необходимо до ее применения определить x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGymaaaaaaa@39EC@ , x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOmaaaaaaa@39ED@  и x 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaG4maaaaaaa@39EE@ . Они вычисляются в модуле по стандартной явной схеме Рунге-Кутта 4-го порядка, причем начальное значение шума ξ 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaaIWaaaaOGaaGypaiaaicdaaaa@3C3C@ .

На входе модуль получает следующие параметры из текстового файла:

  • параметры L max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BD9@ , S max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BE0@ , P max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BDD@ , параметры подобия E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraaaa@38CF@ , Ra MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabg gaaaa@39C0@ ; Pr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaabk haaaa@39CF@ , Pm MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaab2 gaaaa@39CA@ , R α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuamaaBa aaleaacqaHXoqyaeqaaaaa@3AA7@ ; ненулевые коэффициенты Галеркина (все прочие по умолчанию полагаются нулевыми);
  • параметры ядра подавления T K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGlbaabeaaaaa@39DC@ , n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@ ;
  • параметры T E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaamyraaaaaaa@39D7@ , T W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaam4vaaaaaaa@39E9@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@39BF@ , σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@39CA@  процесса ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@ ;
  • массивы начальных значений α s 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0 baaSqaaiaadohaaeaacaaIWaaaaaaa@3B85@ , β l 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aa0 baaSqaaiaadYgaaeaacaaIWaaaaaaa@3B80@ , γ p 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aa0 baaSqaaiaadchaaeaacaaIWaaaaaaa@3B8A@ ;
  • общее время моделирования T max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BE1@  и шаг по времени h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@38F4@ .

На выходе модуль формирует текстовый файл, каждая строка которого содержит:

  • отсчет времени t n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbaabeaaaaa@3A1F@ ;
  • отсчеты амплитуд мод скорости β l n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aa0 baaSqaaiaadYgaaeaacaWGUbaaaaaa@3BB9@ , l=1,, L max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGmbWaaSbaaSqaaiaad2ga caWGHbGaamiEaaqabaaaaa@40DA@ ;
  • отсчеты амплитуд мод температуры α s n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0 baaSqaaiaadohaaeaacaWGUbaaaaaa@3BBE@ , s=1,, S max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGtbWaaSbaaSqaaiaad2ga caWGHbGaamiEaaqabaaaaa@40E8@ ;
  • отсчеты амплитуд магнитных мод γ p n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aa0 baaSqaaiaadchaaeaacaWGUbaaaaaa@3BC3@ , p=1,, P max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiaai2 dacaaIXaGaaGilaiablAciljaaiYcacaWGqbWaaSbaaSqaaiaad2ga caWGHbGaamiEaaqabaaaaa@40E2@ ;
  • отсчет шума ξ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGUbaaaaaa@3AEA@ ;
  • отсчет интегрального члена u n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaamOBaaaaaaa@3A21@ ;
  • отсчет переменной интенсивности α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  -эффекта R α 1+ ξ n / 1+ u n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuamaaBa aaleaacqaHXoqyaeqaaOWaaeWaaeaacaaIXaGaey4kaSIaeqOVdG3a aWbaaSqabeaacaWGUbaaaaGccaGLOaGaayzkaaGaaG4lamaabmaaba GaaGymaiabgUcaRiaadwhadaahaaWcbeqaaiaad6gaaaaakiaawIca caGLPaaaaaa@46C7@ .

Модуль численного решения уравнений модели для степенного ядра

Модуль реализован на C++ и предназначен для решения уравнений модели (7)-(9) с начальными значениями (10) при ядрах подавления

K(t)= M ρ,ψ t ρ (1+t) ρ+ψ ,ρ0,ψ>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeqaaa qaaiaadUeacaaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaWGnbWa aSbaaSqaaiabeg8aYjaaiYcacqaHipqEaeqaaOGaamiDamaaCaaale qabaGaeqyWdihaaaGcbaGaaGikaiaaigdacqGHRaWkcaWG0bGaaGyk amaaCaaaleqabaGaeqyWdiNaey4kaSIaeqiYdKhaaaaakiaaiYcacq aHbpGCcqGHLjYScaaIWaGaaGilaiabeI8a5jaai6dacaaIWaGaaGil aaaaaaa@56A6@  (22)

где M ρ,ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacqaHbpGCcaaISaGaeqiYdKhabeaaaaa@3D49@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  нормировочный коэффициент, определяемый условием max t0 K(t)=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaubeaeqale aacaWG0bGaeyyzImRaaGimaaqabOqaaiGac2gacaGGHbGaaiiEaaaa caWGlbGaaGikaiaadshacaaIPaGaaGypaiaaigdaaaa@4347@ . Ясно, что параметр ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKhaaa@39D5@  определяет порядок асимптотики ядра, поскольку K(t)1/ t ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGykaebbfv3ySLgzGueE0jxyaGqbaiab=XJi6iaaigda caaIVaGaamiDamaaCaaaleqabaGaeqiYdKhaaaaa@4556@  при t+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabgk ziUkabgUcaRiabg6HiLcaa@3D40@ . Параметр же ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@39C7@  определяет задержку отклика α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  -эффекта на подавление. Это следует из рассуждений, полностью аналогичных рассуждениям о роли параметра n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@38FA@  в экспоненциальных ядрах, а максимум функции K(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaaiI cacaWG0bGaaGykaaaa@3B35@  достигается в точке t=ρ/ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaai2 dacqaHbpGCcaaIVaGaeqiYdKhaaa@3E0E@ . Иллюстрирующие примеры ядер приведены на рис. 3.

 

Рис. 3. Степенные ядра K(t) =Mρ,ψtρ/(1+t)ρ+ψ: вверху ψ = 0.5, внизу ψ = 2.

[Figure 3. Power kernels K(t) =Mρ,ψtρ/(1+t)ρ+ψ: ψ = 0.5 top, ψ = 2 bottom.]

 

Для описания реализованной в модуле разностной схемы запишем уравнения (7)-(9) с условиями (10) в следующем общем виде

dx dt =f x,u,ξ(t),a ,u(t)= 0 t K tτ T K q x(τ),a dτ,x(0)= x 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeqaaa qaamaalaaabaGaamizaiaadIhaaeaacaWGKbGaamiDaaaacaaI9aGa amOzamaabmaabaGaamiEaiaaiYcacaWG1bGaaGilaiabe67a4jaaiI cacaWG0bGaaGykaiaaiYcacaWGHbaacaGLOaGaayzkaaGaaGilaiaa ywW7caWG1bGaaGikaiaadshacaaIPaGaaGypamaapedabeWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiaadUeadaqadaqaamaalaaabaGa amiDaiabgkHiTiabes8a0bqaaiaadsfadaWgaaWcbaGaam4saaqaba aaaaGccaGLOaGaayzkaaGaamyCamaabmaabaGaamiEaiaaiIcacqaH epaDcaaIPaGaaGilaiaadggaaiaawIcacaGLPaaacaaMi8Uaamizai abes8a0jaaiYcacaaMf8UaamiEaiaaiIcacaaIWaGaaGykaiaai2da caWG4bWaaWbaaSqabeaacaaIWaaaaOGaaGilaaaaaaa@6FCD@  (23)

где фазовый вектор x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@3904@  состоит из амплитуд α s (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadohaaeqaaOGaaGikaiaadshacaaIPaaaaa@3D32@ , β l (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadYgaaeqaaOGaaGikaiaadshacaaIPaaaaa@3D2D@ , γ p (t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadchaaeqaaOGaaGikaiaadshacaaIPaaaaa@3D37@ , а вектор параметров a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@38ED@  включает в себя все управляющие параметры и коэффициенты Галeркина.

Модуль численно решает задачу (23) с помощью комбинированной схемы типа «предиктор MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@ корректор». Для дифференциальной части задачи в основе схемы лежит метод Коши-Эйлера, а для интегральной MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  метод трапеций.

Отметим прежде всего, что для каждого момента времени t n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbaabeaaaaa@3A1F@  должны быть вычислены значения ядра K nh T K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaabm aabaWaaSaaaeaacaWGUbGaamiAaaqaaiaadsfadaWgaaWcbaGaam4s aaqabaaaaaGccaGLOaGaayzkaaaaaa@3E2F@  и записаны в одномерный массив K n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaCa aaleqabaGaamOBaaaaaaa@39F7@ . Размер массива определяется отношением времени моделирования к шагу h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@38F4@ .

Начальное значение фазового вектора x 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGimaaaaaaa@39EB@  известно, начальные значения u 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGimaaaakiaai2dacaaIWaaaaa@3B73@ , q 0 =q x 0 ,a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaCa aaleqabaGaaGimaaaakiaai2dacaWGXbWaaeWaaeaacaWG4bWaaWba aSqabeaacaaIWaaaaOGaaGilaiaadggaaiaawIcacaGLPaaaaaa@40BE@ , ξ 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaaIWaaaaOGaaGypaiaaicdaaaa@3C3C@ .

Рассмотрим теперь основной расчетный этап MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  переход от момента t n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbaabeaaaaa@3A1F@  к моменту t n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3BBC@ . Будем считать, что для момента времени t n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaWGUbaabeaaaaa@3A1F@  известны x n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaamOBaaaaaaa@3A24@ , ξ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGUbaaaaaa@3AEA@  и u n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaamOBaaaaaaa@3A21@ , а также записаны на всех предыдущих шагах вычислений элементы массива q k =q x k ,a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaCa aaleqabaGaam4Aaaaakiaai2dacaWGXbWaaeWaaeaacaWG4bWaaWba aSqabeaacaWGRbaaaOGaaGilaiaadggaaiaawIcacaGLPaaaaaa@412A@  для kn MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgs MiJkaad6gaaaa@3B9F@ .

Шаги этапа следующие:

  1. Вычисляем по формуле трапеций интеграл 0 t n K t n+1 τ T K q x(τ),a dτ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiDamaaBaaabaGaamOBaaqabaaaniabgUIiYdGc caWGlbWaaeWaaeaadaWcaaqaaiaadshadaWgaaWcbaGaamOBaiabgU caRiaaigdaaeqaaOGaeyOeI0IaeqiXdqhabaGaamivamaaBaaaleaa caWGlbaabeaaaaaakiaawIcacaGLPaaacaWGXbWaaeWaaeaacaWG4b GaaGikaiabes8a0jaaiMcacaaISaGaamyyaaGaayjkaiaawMcaaiaa yIW7caWGKbGaeqiXdqhaaa@543C@ :
    I= 0,еслиn=0; h 2 K n+1 q 0 +h i=1 n1 K n+1i q i + h 2 K 1 q n ,еслиn0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeqaaa qaaiaadMeacaaI9aWaaiqaaeaafaqabeGabaaabaGaaGimaiaaiYca caaMf8UaaeyneiaabgebcaqG7qGaaeioeiaab6gacaqG9aGaaeimai aabUdaaeaadaWcaaqaaiaadIgaaeaacaaIYaaaaiaadUeadaahaaWc beqaaiaad6gacqGHRaWkcaaIXaaaaOGaamyCamaaCaaaleqabaGaaG imaaaakiabgUcaRiaadIgadaaeWbqabSqaaiaadMgacaaI9aGaaGym aaqaaiaad6gacqGHsislcaaIXaaaniabggHiLdGccaWGlbWaaWbaaS qabeaacaWGUbGaey4kaSIaaGymaiabgkHiTiaadMgaaaGccaaMi8Ua amyCamaaCaaaleqabaGaamyAaaaakiabgUcaRmaalaaabaGaamiAaa qaaiaaikdaaaGaam4samaaCaaaleqabaGaaGymaaaakiaadghadaah aaWcbeqaaiaad6gaaaGccaaISaGaaGzbVlaabwdbcaqGbrGaae4oei aabIdbcaqGUbGaeyiyIKRaaeimaiaab6caaaaacaGL7baaaaaaaa@6D50@
  2. Вычисляем предикторы:
    x pr = x n +hf x n , u n , ξ n ,a , u pr =I+ h 2 K 1 q n + h 2 K 0 q x pr ,a . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabeqaaa qaaiaadIhadaahaaWcbeqaaiaadchacaWGYbaaaOGaaGypaiaadIha daahaaWcbeqaaiaad6gaaaGccqGHRaWkcaWGObGaamOzamaabmaaba GaamiEamaaCaaaleqabaGaamOBaaaakiaaiYcacaWG1bWaaWbaaSqa beaacaWGUbaaaOGaaGilaiabe67a4naaCaaaleqabaGaamOBaaaaki aaiYcacaWGHbaacaGLOaGaayzkaaGaaGilaiaaywW7caWG1bWaaWba aSqabeaacaWGWbGaamOCaaaakiaai2dacaWGjbGaey4kaSYaaSaaae aacaWGObaabaGaaGOmaaaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGa amyCamaaCaaaleqabaGaamOBaaaakiabgUcaRmaalaaabaGaamiAaa qaaiaaikdaaaGaam4samaaBaaaleaacaaIWaaabeaakiaadghadaqa daqaaiaadIhadaahaaWcbeqaaiaadchacaWGYbaaaOGaaGilaiaadg gaaiaawIcacaGLPaaacaaIUaaaaaaa@6662@
  3. C помощью модуля генерации шума формируем ξ n+1 = ξ next MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGUbGaey4kaSIaaGymaaaakiaai2dacqaH+oaEdaah aaWcbeqaaiaad6gacaWGLbGaamiEaiaadshaaaaaaa@431B@  по известному ξ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGUbaaaaaa@3AEA@
  4. Вычисляем корректоры:
    x n+1 = x n + h 2 f x n , u n , ξ n ,a +f x pr , z pr , ξ n+1 ,a , q n+1 =q x n+1 ,a , u n+1 =I+ h 2 K 1 q n + K 0 q n+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabmqaaa qaaiaadIhadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaaaOGaaGyp aiaadIhadaahaaWcbeqaaiaad6gaaaGccqGHRaWkdaWcaaqaaiaadI gaaeaacaaIYaaaamaadmaabaGaamOzamaabmaabaGaamiEamaaCaaa leqabaGaamOBaaaakiaaiYcacaWG1bWaaWbaaSqabeaacaWGUbaaaO GaaGilaiabe67a4naaCaaaleqabaGaamOBaaaakiaaiYcacaWGHbaa caGLOaGaayzkaaGaey4kaSIaamOzamaabmaabaGaamiEamaaCaaale qabaGaamiCaiaadkhaaaGccaaISaGaamOEamaaCaaaleqabaGaamiC aiaadkhaaaGccaaISaGaeqOVdG3aaWbaaSqabeaacaWGUbGaey4kaS IaaGymaaaakiaaiYcacaWGHbaacaGLOaGaayzkaaaacaGLBbGaayzx aaGaaGilaaqaaiaadghadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXa aaaOGaaGypaiaadghadaqadaqaaiaadIhadaahaaWcbeqaaiaad6ga cqGHRaWkcaaIXaaaaOGaaGilaiaadggaaiaawIcacaGLPaaacaaISa aabaGaamyDamaaCaaaleqabaGaamOBaiabgUcaRiaaigdaaaGccaaI 9aGaamysaiabgUcaRmaalaaabaGaamiAaaqaaiaaikdaaaWaamWaae aacaWGlbWaaWbaaSqabeaacaaIXaaaaOGaamyCamaaCaaaleqabaGa amOBaaaakiabgUcaRiaadUeadaahaaWcbeqaaiaaicdaaaGccaWGXb WaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaOGaay5waiaaw2fa aiaai6caaaaaaa@83DE@
  5. Переходим к следующему этапу.

Видно, что формула для x pr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaamiCaiaadkhaaaaaaa@3B1D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  это шаг явного метода Эйлера, а формула для u pr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaamiCaiaadkhaaaaaaa@3B1A@  представляет собой формулу трапеций для интеграла 0 t n+1 K t n+1 τ T K q x(τ),a dτ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeqale aacaaIWaaabaGaamiDamaaBaaabaGaamOBaiabgUcaRiaaigdaaeqa aaqdcqGHRiI8aOGaam4samaabmaabaWaaSaaaeaacaWG0bWaaSbaaS qaaiaad6gacqGHRaWkcaaIXaaabeaakiabgkHiTiabes8a0bqaaiaa dsfadaWgaaWcbaGaam4saaqabaaaaaGccaGLOaGaayzkaaGaamyCam aabmaabaGaamiEaiaaiIcacqaHepaDcaaIPaGaaGilaiaadggaaiaa wIcacaGLPaaacaaMi8Uaamizaiabes8a0baa@55D9@ , где в последнем слагаемом вместо неизвестного x n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@3BC1@  использован x pr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaamiCaiaadkhaaaaaaa@3B1D@ . Формула для x n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@3BC1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  это шаг неявного метода Эйлера с использованием предикторов вместо неизвестных величин. А формула для u n+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@3BBE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A94@  это обычная формула трапеций для интеграла, выражающего u( t n+1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiI cacaWG0bWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakiaaiMca aaa@3E25@ . Поэтому и получается, что используемая расчетная схема комбинирует метод Коши-Эйлера для дифференциальной части системы (23) и формулы трапеций для интегральной части этой системы.

На входе модуль получает следующие параметры из текстового файла:

  • параметры L max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BD9@ , S max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BE0@ , P max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BDD@ , параметры подобия E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyraaaa@38CF@ , Ra MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabg gaaaa@39C0@ ; Pr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaabk haaaa@39CF@ , Pm MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiuaiaab2 gaaaa@39CA@ , R α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuamaaBa aaleaacqaHXoqyaeqaaaaa@3AA7@ ; ненулевые коэффициенты Галеркина (все прочие по умолчанию полагаются нулевыми);
  • параметры ядра подавления T K MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGlbaabeaaaaa@39DC@ , ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@39C7@ , ψ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKhaaa@39D5@ ;
  • параметры T E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaamyraaaaaaa@39D7@ , T W MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaCa aaleqabaGaam4vaaaaaaa@39E9@ , ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@39BF@ , σ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@39CA@  процесса ξ(t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaaG ikaiaadshacaaIPaaaaa@3C28@ ;
  • массивы начальных значений α s 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0 baaSqaaiaadohaaeaacaaIWaaaaaaa@3B85@ , β l 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aa0 baaSqaaiaadYgaaeaacaaIWaaaaaaa@3B80@ , γ p 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aa0 baaSqaaiaadchaaeaacaaIWaaaaaaa@3B8A@ ;
  • общее время моделирования T max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGTbGaamyyaiaadIhaaeqaaaaa@3BE1@  и шаг по времени h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@38F4@ .

На выходе модуль формирует текстовый файл, структура которого полностью идентична структуре выходного файла предыдущего модуля.

Заключение

Авторами разработан комплекс программ для моделирования геодинамо в рамках класса спектральных моделей с эредитарным подавлением турбулентного генератора магнитного поля (α-эффекта).

В основе моделей лежат построения галеркинских аппроксимаций путем разложения полей задачи по собственным модам свободных затуханий. Поэтому первая группа задач, решаемых комплексом, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@  это расчет параметров базисных мод и расчет коэффициентов Галеркина. Эти задачи решаются двумя модулями комплекса за счет комбинированных численно-аналитических вычислений.

Моделирование эредитарного подавления можно выполнять по выбору пользователя ядрами подавления с экспоненциальной и степенной асимптотиками. Это обеспечивается двумя модулями численного решения на основе различных разностных схем.

Разработанный комплекс может быть полезен специалистам, изучающим задачу геодинамо на основе спектральных моделей и эффекты памяти в этой задаче.

×

About the authors

Gleb M. Vodinchar

Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS

Author for correspondence.
Email: gvodinchar@ikir.ru
ORCID iD: 0000-0002-5516-1931

PhD (Phys & Math), Associate Professor, Leading Researcher

Russian Federation, 684034, Paratynka, Kamchatka, Mirnaya str., 7

Evgeny A. Kazakov

Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS

Email: gvodinchar@ikir.ru
ORCID iD: 0000-0001-7235-4148

Junior Researcher

Russian Federation, 684034, Paratynka, Kamchatka, Mirnaya str., 7

Liybov K. Feshchenko

Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS

Email: gvodinchar@ikir.ru
ORCID iD: 0000-0001-5970-7316

PhD (Phys & Math), Researcher

Russian Federation, 684034, Paratynka, Kamchatka, Mirnaya str., 7

References

  1. Glatzmaier G. A., Roberts P. H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, 1995, vol. 377, pp. 203–209. doi: 10.1038/377203a0
  2. Glatzmaier G. A., Roberts P. H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle, Physics of the Earth and Planetary Interiors, 1995, vol. 91, no. 1–3, pp. 63–75. doi: 10.1016/0031-9201(95)03049-3
  3. Merril R., McElhinny M., McFadden P. The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. New York, Acad. Press, 1996, 532 p.
  4. Gledzer E. B., et. al. Sistemy gidrodinamicheskogo tipa i ih primenenie [Hydrodynamic type systems and their application]. Moscow, Nauka, 1981, 368 p. (In Russian).
  5. Moinin A. B. Teoreticheskie osnovy geofizicheskoj gidrodinamiki [Theoretical foundations of geophysical fluid dynamics]. Leningrad, Gidrometeoizdat, 1988, 424 p. (In Russian).
  6. Vodinchar G. M., Feshchenko L. K. Model of Geodynamo Driven by Six-jet Convection in the Earth’s Core, Magnetohydrodynamics, 2016, vol. 52, no. 1, pp. 287–299.
  7. Vodinchar G., Feshchenko L. Computational Technology for the Basis and Coefficients of Geodynamo Spectral Models in the Maple System, Mathematics, 2023, vol. 11, no. 13, 3000.
  8. Krause F., R‥adler K.-H. Mean-filed magnetohydrodynamics and dynamo theory. Berlin, Academic-Verlag, 1980, 284 p.
  9. Zeldovich Ya. B., Ruzmaikin A. A., Sokoloff D. D. Magnetic Fields in Astrophysics. New York, Gordon and Breach, 1983, 365 p.
  10. Brandenburg A. Memory effects in turbulent transport, Astr. Jour., 2009, 706: 1, 712.
  11. Tihonov A. N., Samarskii A. A. Equations of Mathematical Physics. New York, Dover Publications, 2013, 800 p.
  12. L’Ecuyer P. Random Number Generation. In: Handbook of Computational Statistics: Concepts and Methods. Berlin–Heidelberg, Springer, 2012, pp. 35-72-112
  13. Vodinchar G., Feshchenko L. Fractal Properties of the Magnetic Polarity Scale in the Stochastic Hereditary αω-Dynamo Model, Fractal Fract, 2022, vol. 6, no. 6, 328.
  14. Amosov A. A., et. al. Vychislitel’nye metody dlya inzhenerov [Computational Methods for Engineers]. Moscow, Vysshaya shkola, 1994, 544 p. (In Russian).
  15. Vodinchar G. M., Kazakov E. A. Elimination of the integral term in the equations of one hereditary system related to the problem of hydromagnetic dynamo, Vest. KRAUNC. Fiz.-Mat. Nauki, 2023, 42:1, 180–190. doi: 10.26117/2079-6641-2023-42-1-180-190 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Structure of the complex.

Download (128KB)
3. [Figure 2. Exponential kernels K(t) =Mntn exp(−t).]

Download (121KB)
4. [Figure 3. Power kernels K(t) =Mρ,ψtρ/(1+t)ρ+ψ: ψ = 0.5 top, ψ = 2 bottom.]

Download (377KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».