Mathematical Modeling of the Neuron Autocoling in the Cell Membrane Using the Fractional Model of FitzHugh-Nagumo with the Function of Irritant Intensity
- Авторлар: Alimova N.B.1
-
Мекемелер:
- Tashkent State Financial University
- Шығарылым: Том 48, № 3 (2024)
- Беттер: 56-69
- Бөлім: Mathematical modeling
- URL: https://journal-vniispk.ru/2079-6641/article/view/277555
- DOI: https://doi.org/10.26117/2079-6641-2024-48-3-56-69
- EDN: https://elibrary.ru/RBCKMK
- ID: 277555
Дәйексөз келтіру
Толық мәтін
Аннотация
The article studies the process of temporary propagation of a nerve impulse in a cell membrane. For this purpose, a new mathematical model based on the fractional FitzHugh-Nagumo oscillator with a stimulus intensity function was proposed. A feature of the fractional oscillator is that the model equation contains derivatives of fractional variables of the Gerasimov-Caputo type. The proposed mathematical model is a Cauchy problem. Due to the nonlinearity of the model equation, the solution to the Cauchy problem was sought using a numerical method of a nonlocal explicit finite-difference scheme of the first order of accuracy. The numerical method was implemented in the Maple 2022 language. Using a numerical algorithm, the simulation results were visualized, oscillograms and phase trajectories were constructed for various values of the model parameters. It is shown that the solution to the new mathematical model can have relaxation oscillations. In addition, an example is given in which the limit cycle is stable. It is also shown that the proposed FitzHugh-Nagumo fractional oscillator with stimulus intensity function has rich dynamics: various regular and chaotic modes.
Авторлар туралы
Nazira Alimova
Tashkent State Financial University
Хат алмасуға жауапты Автор.
Email: alimova_nazira85@mail.ru
ORCID iD: 0009-0003-9684-045X
teacher of the department of "Higher and applied mathematics"
Өзбекстан, 100000, Tashkent, Amir Temura Avenue, 60AӘдебиет тізімі
- FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal. 1961. no. 1. P. 446–446.
- Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc. IRE. 1962. no. 50. P. 2061–2070.
- Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952. no. 117(4). P. 500-544. doi: 10.1113/jphysiol.1952.sp004764 .
- Ambrosio B. Qualitative analysis of certain reaction-diffusion systems of the FitzHugh-Nagumo type. Evolution Equations and Control Theory. 2023. vol. 12, No. 6. P. 1507-1526. doi: 10.3934/eect.2023023.
- Volterra V. Functional theory, integral and integro-differential equations. New York. Dover Publications. 2005. 288 p.
- Nakhushev A.M. Drobnoye ischisleniye i yego primeneniye [Fractional calculus and its application]. Moscow. Fizmatlit. 2003. 272 p. (In Russian).
- Lipko O. D. Mathematical model of propagation of nerve impulses with regard hereditarity. Vestnik KRAUNC. Fiziko-Matematiсeskie Nauki. 2017. no. 1(17). P. 33-43. doi: 10.18454/2079-6641-2017-17-1-33-43.
- Lipko O.D., Parovik R.I. Some aspects of investigation of limit cycles of Fitzhugh-Nagumo oscillator with degree memory. Journal of Physics: Conference Series. 2018. vol. 1141. 012125. doi: 10.1088/1742-6596/1141/1/012125.
- Lipko O., Parovik R. The study of chaotic and regular regimes of the fractal oscillators FitzHugh-Nagumo. E3S Web of Conferences. 2018. vol. 62. 02017 doi: 10.1051/e3sconf/20186202017.
- Gerasimov A. N. Generalization of the laws of linear deformation and their application to problems of internal friction. AN SSR. Prikladnaya matematika i mekhanika. 1948. vol. 44. no. 6. P. 62-78. (In Russian).
- Caputo M. Linear models of dissipation whose Q is almost frequency independent - II. Geophysical Journal International. 1967. vol. 13. P. 529-539.
- Patnaik S., Hollkamp J. P., Semperlotti F. Applications of variable-order fractional operators: A review. Proc. R. Soc. A R. Soc. Publ. 2020. no. 476. 20190498. doi: 10.1098/rspa.2019.0498.
- Parovik R. I. Explicit Finite-Difference Scheme for the Numerical Solution of the Model Equation of Nonlinear Hereditary Oscillator with Variable-Order Fractional Derivatives. Archives of Control Sciences. 2016. vol. 26. no. 3. P. 429-435. doi: 10.1515/acsc-2016-0023.
- McSharry P. E., Clifford G. D., Tarassenko L., Smith L. A. A dynamical model for generatingsynthetic electrocardiogram signals, IEEE transactions on biomedical engineering., 2003. vol. 50, no. 3, P. 289-294.
- Bendixson I. Sur les courbes définies par des équations différentielles. Acta Math. 1901. vol. 24(1). P. 1–88.
- Pskhu A. V., Rekhviashvili S. Sh. Analysis of Forced Oscillations of a Fractional Oscillator. Technical Physics Letters. 2018. vol. 44, no. 12. pp. 1218-1221. doi: 10.1134/S1063785019010164.
- Parovik R. I. Amplitude-Frequency and Phase-Frequency Performances of Forced Oscillations of a Nonlinear Fractional Oscillator. Technical Physics Letters. 2019. vol. 45. no. 7. pp. 660-663. doi: 10.1134/S1063785019070095.
- Petras I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Berlin: Springer, 2011. 218 p.
- Lipko O. D. Investigation of regular and chaotic modes of the FitzHugh- Nagumo fractal oscillator, Vestnik KRAUNC. Fiz.-mat. nauki. 2018. vol. 23. no. 3. P. 116-123. doi: 10.18454/2079-6641-2018-23-3-116-123 (In Russian).
Қосымша файлдар
