Performance of electronic refocusing of the beams of the multi-beam hybrid reflector antenna by processing the signals of the on-ground beacon

Cover Page

Cite item

Full Text

Abstract

Problem statement. Under operational conditions, the reflector profile of the multibeam hybrid mirror antenna (MBHRA) on board the satellite experiences deformations, disrupting the required beam configuration and deteriorating the energy characteristics of the communication system.

Aim. This study aims at evaluating the effectiveness of electronic stabilization (refocusing) of the satellite MBHRA beams by reconstructing the current reflector profile through processing the signal signature from an on-ground beacon.

Results/Conclusion. Improved coverage quality has been confirmed by adjusting the weighting coefficients of the antenna array clusters while monitoring the current reflector profile via reconstruction of the best-fit paraboloid (BFP) from the ground beacon's signal. The BFP reconstruction algorithm operates effectively at any beacon position within the working area. Stability and accuracy increase slightly (by 0,1 dB) when the beacon is near the antenna's optical axis. It was found that the BFP algorithm yields good performance when the signal-to-noise ratio in the communication channels exceeds 10 dB.

Practical significance. The use of electronic stabilization of MBHRA beams mitigates the impact of operational factors on the radio-technical characteristics of satellite communication systems, eliminating the need for photogrammetric reflector controls and mechanical stabilization methods.

Full Text

Restricted Access

About the authors

Anatoly V. Dardymov

Kazan National Research Technical University named after A.N. Tupolev-KAI

Author for correspondence.
Email: anatoly.dardymov@yandex.ru
SPIN-code: 5697-1450

PhD student at the Department for Radio-Electronic and Telecommunication Systems. Research interests – antenna technology. The author of 6 scientific publications.

Russian Federation, 10, Karl Marx Street, Kazan, 420111

References

  1. Wang C.S., Yuan S, Liu X et al. Temperature distribution and influence mechanism of large reflector antennas under solar radiation: solar thermal effect on reflector antenna. Radio science. 2017;52(10):1253-1260.
  2. Shendalev D.O. Development of shaping structure for umbrella type reflector. Vestnik. Scientific Journal of Siberian State Aerospace University named after academician M. F. Reshetnev. 2013;6(52):164-173. (In Russ.).
  3. Taygin V.B., Lopatin A.V. Method of achievement the high accuracy of the shape of reflectors of mirror antennas of spacecraft. Spacecrafts & Technologies. 2019;3(4):200-208. doi: 10.26732/2618-7957-2019-4-200-208. (In Russ.).
  4. Gryanik V.M., Loman V.I. Transformable umbrella-type mirror antennas. Moscow, Radio i svjaz; 1987. 72 p. (In Russ.).
  5. Subrahmanyan R. Photogrammetric measurement of the gravity deformation in a Cassegrain antenna. IEEE Transactions on Antennas and Propagation. 2005;53(8):2590-2596.
  6. Kalabegashvili GI, Bikeev EV, Matylenko MG. Selection of the device for orbital alignment of a large transformable antenna reflector. Reshetnev readings. 2018;1:121-122. (In Russ.).
  7. Bikeev E.V., Jakimov E.N., Matylenko M.G. et al. The method of compensation of construction deformation for large spacecraft antenna. Vestnik. Scientific Journal of Siberian State Aerospace University named after academician M. F. Reshetnev. 2016;17(3):673-683. (In Russ.).
  8. Korovjakov A.N., Sudarchikov S.A., Ushakov A.V. Tracking optoelectronic monitoring of deformation in the problem of dynamic alignment of spatial observation devices. Saint-Petersburg: Information Technologies, Mechanics and Optics University; 2008. 212 p. (In Russ.).
  9. Dai M., Newman T.S., Cao C. Least-squares-based fitting of paraboloids. Pattern recognition. 2007;40(2):504-515.
  10. Goldobin N.N. Estimation of the form of a large-sized transformed reflector surface for a Spacecraft. Vestnik. Scientific Journal of Siberian State Aerospace University named after academician M. F. Reshetnev. 2013;1(47):106-111. (In Russ.).
  11. Goldobin N.N. Analysis of efficiency of orbital adjustment of the large-sized reflector. Reshetnev Readings. 2018;1:97-99. (In Russ.).
  12. Goldobin N.N. Estimating target accuracy of a reflector on the basis of information about deviations of ribs of frame spokes. Reshetnev Readings. 2016;1:102-104. (In Russ.).
  13. Romanov A.G., Danilov I.Yu., Mochalov V.V. et al. Extra focusing multi-beam antenna for compensation of distortions of its reflector in operating conditions. Science intensive technologies. 2017;(12):85-90. (In Russ.).
  14. Nesterov Yu. Introductory Lectures on Convex Optimization: A Basic Course. Switzerland: Springer, 2018. Vol. 137, 604 p. doi: https://doi.org/10.1007/978-3-319-91578-4
  15. Mochalov V.V. Validation of the acoustic approximation algorithm. Achievements of Modern Radioelectronics. 2019;(12):124-128. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of the coordinate system (a) and the beams of the multibeam hybrid mirror antenna (b)

Download (120KB)
3. Fig. 2. Focal spots: a, b, c – central cluster of the antenna array; d, e, g – peripheral cluster of the antenna array. Configuration details: a, g – nominal paraboloid; b, d – deflected optical axis; c, e – shifted vertex

Download (295KB)
4. Fig. 3. Performance of the best-fit paraboloid (BFP) algorithm as a function of the direction to the on-ground beacon: a – standard deviation (ε²) of signal signatures; b – beam gain

Download (68KB)
5. Fig. 4. Performance of the BFP algorithm under noise conditions: a – standard deviation of signal signatures versus signal-to-noise ratio; b – beam gain during refocusing in the presence of noise; c – level of reconstruction errors (percentage of cases where the standard deviation exceeds the -10 dB threshold)

Download (10KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».