Realization of the scientific and cognitive potential of teaching university students to inverse and incorrect problems in the context of informatization of education

Cover Page

Cite item

Full Text

Abstract

Problem and goal . Since the mid-50s of the 20th century, both Russian and foreign scientists began to actively conduct, and, at present, scientific research on inverse and incorrectly posed problems is being successfully carried out. Often, research on inverse and incorrect problems is carried out jointly by Russian and foreign experts. At present, the results of joint research by specialists on inverse and incorrect problems from Germany, Italy, China, Russia, Sweden, Japan and other countries are discussed at various thematic international scientific conferences and are subsequently published on the pages of scientific Russian and foreign journals. Many such publications can be found in the electronic libraries of scientific publications elibrary.ru, “CyberLeninka”, in the bibliographic and abstract database “Scopus” and other bibliographic and abstract databases. The wide availability of such bibliographic and abstract electronic databases allows the teacher who teaches students inverse and incorrect problems to keep abreast of modern scientific achievements in the scientific world and to form the content of a variety of elective courses, including modern mathematical methods and approaches to researching inverse and incorrect problems. When teaching inverse and incorrect problems, the teacher must realize the goals and objectives of not only the formation of deep scientific subject knowledge in students, but also the identification of the scientific and cognitive potential of such training. Methodology. Realization of the scientific and cognitive potential of teaching university students inverse and incorrect problems using computer technologies. Results. Understanding the scientific and cognitive potential of inverse and incorrect problems, their relationship with applied aspects, the ability to use computer technologies in the study of applied problems will allow students, after graduating from an educational institution, to prove themselves as a successful specialist in applied mathematics in general, and in inverse and incorrect problems, in particular. Conclusion. Graduates who have acquired solid knowledge of inverse and incorrect problems, possess modern scientific methods of their research developed by specialists from different countries of the world, understand the scientific and cognitive potential of inverse and incorrect problems, and possess the skills of independent selection of effective information technologies for solving applied mathematical problems will successfully work in research organizations and independently conduct applied research.

About the authors

Viktor S. Kornilov

Moscow City University

Author for correspondence.
Email: vs_kornilov@mail.ru
ORCID iD: 0000-0003-0476-3921

Doctor of Pedagogical Sciences, Candidate of Physical and Mathematical Sciences, Full Professor, Professor of the Department of Informatization of Education, Institute of Digital Education

28 Sheremetyevskaya St, Moscow, 127521, Russian Federation

References

  1. Belov YuA, Lyubanova ASh, Polynceva SV, Sorokin RV, Frolenkov IV. Inverse problems of mathematical physics. Krasnoyarsk: SFU Publ.; 2008. (In Russ.)
  2. Vabishchevich PN. Computational methods of mathematical physics. Inverse and control problems. Moscow: Vuzovskaya kniga Publ.; 2019. (In Russ.)
  3. Petrov YuP, Sizikov VS. Correct, incorrect and intermediate tasks with applications. Saint Petersburg: Politekhnika Publ.; 2003. (In Russ.)
  4. Romanov VG. Stability in inverse problems. Moscow: Nauchnyj mir Publ.; 2005. (In Russ.)
  5. Yurko VA. Introduction to the theory of inverse spectral problems. Moscow: Fizmatlit Publ.; 2007. 384 p. (In Russ.)
  6. Nguyen PM, Nguyen LH. A numerical method for an inverse source problem for parabolic equations and its application to a coefficient inverse problem. Journal of Inverse and Ill-Posed Problems. 2020;28(3):323-339.
  7. Fedorov VE, Ivanova ND. Inverse problems for a class of linear Sobolev type equations with overdetermination on the Kernel of operator at the derivative. Journal of Inverse and Ill-Posed Problems. 2020;28(1):53-61.
  8. Flemming J. Existence of variational source conditions for nonlinear inverse problems in banach spaces. Journal of Inverse and Ill-Posed Problems. 2020;26(2):227-286.
  9. Calvetti D, Morigi S, Reichel L, Sgallari F. Tikhonov regularization and the L-curve for large discrete illposed problems. J. Comp. and Appl. Math. 2000;123:423-446.
  10. Mei Y, Fulmer R, Raja V, Wang S, Goenezen S. Estimating the non-homogeneous elastic modulus distribution from surface deformations. Int. J. Solids and Structures. 2016;83:73-80.
  11. Falleta S, Monegato G, Scuderi L. On the discretization and application of two space - time boundary integral equations for 3D wave propagation problems in unbounded domains. Applied Numerical Mathematics. 2018;124:22-43.
  12. Huang L, Liang J, Wu C. A three-dimensional indirect boundary integral equation method for modeling elastic wave scattering in a layered halfspace. Int. J. Solids Structures. 2019;169:81-94.
  13. Bezruchko AS. Teaching methodology for solving differential equations of future mathematics teachers based on the use of information technologies (dissertation of Candidate of Pedagogical Sciences). Moscow; 2014. (In Russ.)
  14. Belenkova IV. Methods of using mathematical packages in the professional training of university students (dissertation of Candidate of Pedagogical Sciences). Ekaterinburg; 2004. (In Russ.)
  15. Goloskokov DP. Equations of mathematical physics. Solving problems in the Maple system. Saint Petersburg: Piter Publ.; 2004. (In Russ.)
  16. Grinshkun VV. Existing approaches to the use of informatization means in teaching natural science disciplines. MCU Journal of Informatics and Informatization of Education. 2014;4(30):8-13. (In Russ.)
  17. Daher EA. Mathematica system in the process of mathematical training of specialists in economics (dissertation of Candidate of Pedagogical Sciences). Moscow; 2004. (In Russ.)
  18. Edvards ChG, Penni DE. Differential equations and boundary value problems: modeling and computation with Mathematica, Maple and Matlab. Moscow: Vil'yams Publ.; 2008. (In Russ.)
  19. Bidajbekov EY, Kornilov VS, Kamalova GB. Teaching future teachers of mathematics and computer science inverse problems for differential equations. MCU Journal of Informatics and Informatization of Education. 2014;3(29):57-69. (In Russ.)
  20. Kornilov V.S. Humanitarian component of applied mathematical education. MCU Journal of Informatics and Informatization of Education. 2006;2(7):94 - 99. (In Russ.)
  21. Kornilov VS. The role of computer science training courses in teaching university students to numerical methods. Bulletin of Peoples’ Friendship University of Russia. Series: Informatization in Education. 2011;(3):24-27. (In Russ.)
  22. Kornilov VS. Inverse problems in academic disciplines of applied mathematics. MCU Journal of Informatics and Informatization of Education. 2014;1(27):60-68. (In Russ.)
  23. Kornilov VS. Teaching students to inverse problems of mathematical physics as a factor in the formation of fundamental knowledge by integral equations. Bulletin of Laboratory of Mathematical, Natural-Science Education and Informatization. The Reviewed Collection of Scientific Work. 2015;VI:251-257. (In Russ.)
  24. Kornilov VS. Realization of scientific and educational potential of teaching university students inverse problems for differential equations. Kazan Pedagogical Journal. 2016; 6(119):55-60. (In Russ.)
  25. Kornilov VS. Theory and technique of training to the inverse problems for differential equations. Moscow: OntoPrint; 2017. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».