Неинвазивные методы преимплантационной оценки качества бластоцисты в программах экстракорпорального оплодотворения
- Авторы: Абашева Д.Д.1, Руденко Е.Е.1, Трифонова Н.С.1, Короленко С.Е.2, Уткина Ю.И.3, Тихомирова П.И.4
-
Учреждения:
- Первый Московский государственный медицинский университет им. И.М. Сеченова
- Тюменский государственный медицинский университет
- Северо-Западный государственный медицинский университет им. И.И. Мечникова
- Курский государственный медицинский университет
- Выпуск: Том 12, № 1 (2025)
- Страницы: 15-26
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/2313-8726/article/view/310005
- DOI: https://doi.org/10.17816/aog635292
- ID: 310005
Цитировать
Аннотация
С момента первой процедуры экстракорпорального оплодотворения вспомогательные репродуктивные технологии помогли многим пациентам в лечении бесплодия. Однако, по данным национального регистра вспомогательных репродуктивных технологий Российской ассоциации репродукции человека (2022), вероятность беременности в результате экстракорпорального оплодотворения по-прежнему составляет менее 50%. Морфологическая оценка качества бластоцисты остаётся золотым стандартом. В определённой степени доля имплантации увеличилась благодаря отбору высококачественных эмбрионов. Однако в связи с субъективным характером морфологической оценки необходимы дальнейшие исследования для установления связи репродуктивного потенциала эмбрионов с их морфологией. Повысить объективность оценки и обнаружить новые морфологические признаки качества бластоцисты может система замедленной съёмки в комплексе с возможностями искусственного интеллекта. Детекция экзосом, белков и метаболитов, которые выделяются в процессе роста в культуральную среду, могут помочь определить способность бластоцисты к имплантации, так как они предоставляют информацию о физиологическом состоянии эмбриона и его взаимодействии с окружающей средой. В данном научном обзоре представлены сведения о морфологических, биохимических признаках качества бластоцисты, их взаимосвязи, а также применении искусственного интеллекта в отборе эмбриона для переноса. Поиск публикаций произведён в электронных базах данных PubMed и Google Scholar. Статьи искали по следующим ключевым словам: «IVF», «blastocyst», «human embryo», «culture media», «timelapse system», «embryo string», «embryo exosomes», «morphology», «artificial intilligence», «proteome», «metabolome». В работе проанализированы статьи, опубликованные в последние 5 лет.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Дарья Денисовна Абашева
Первый Московский государственный медицинский университет им. И.М. Сеченова
Автор, ответственный за переписку.
Email: daryaabash5@gmail.com
ORCID iD: 0009-0002-9859-7601
студент
Россия, 119991, Москва, ул. Трубецкая, д. 8, стр. 2Екатерина Евгеньевна Руденко
Первый Московский государственный медицинский университет им. И.М. Сеченова
Email: redikor2@yandex.ru
ORCID iD: 0000-0002-0000-1439
SPIN-код: 4833-3586
канд. мед. наук, доцент
Россия, 119991, Москва, ул. Трубецкая, д. 8, стр. 2Наталья Сяитовна Трифонова
Первый Московский государственный медицинский университет им. И.М. Сеченова
Email: Trifonova.nataly@mail.ru
ORCID iD: 0000-0002-2891-3421
SPIN-код: 4753-5430
д-р мед. наук
Россия, 119991, Москва, ул. Трубецкая, д. 8, стр. 2Светлана Евгеньевна Короленко
Тюменский государственный медицинский университет
Email: korolenko.svt@gmail.com
ORCID iD: 0009-0001-4062-4817
студент
Россия, ТюменьЮлия Ильинична Уткина
Северо-Западный государственный медицинский университет им. И.И. Мечникова
Email: utknes@mail.ru
ORCID iD: 0009-0003-1960-9027
студент
Россия, Санкт-ПетербургПолина Игоревна Тихомирова
Курский государственный медицинский университет
Email: p.tikhomiirova@yandex.ru
ORCID iD: 0009-0008-8309-0940
студент
Россия, КурскСписок литературы
- Farquhar C, Rishworth JR, Brown J, Nelen WL, Marjoribanks J. Assisted reproductive technology: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2014;(12):CD010537. doi: 10.1002/14651858.CD010537.pub3
- Gardner DK, Lane M, Stevens J, et al. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–1158. doi: 10.1016/s0015-0282(00)00518-5
- Wang C, Shu J, Lin R, et al. Choosing the optimal blastocyst by morphology score versus developmental rate in frozen-thawed embryo transfer cycles. Hum Fertil (Camb). doi: 10.1080/14647273.2020.1778199
- Li N, Guan Y, Ren B, et al. Effect of blastocyst morphology and developmental rate on euploidy and live birth rates in preimplantation genetic testing for aneuploidy cycles with single-embryo transfer. Front Endocrinol (Lausanne). 2022;13:858042. doi: 10.3389/fendo.2022.858042
- Zhang WY, Johal JK, Gardner RM, et al. The impact of euploid blastocyst morphology and maternal age on pregnancy and neonatal outcomes in natural cycle frozen embryo transfers. J Assist Reprod Genet. 2022;39(3):647–654. doi: 10.1007/s10815-022-02423-1
- Wang T, Si J, Wang B, et al. Prediction of live birth in vitrified-warmed 1PN-derived blastocyst transfer: Overall quality grade, ICM, TE, and expansion degree. Front Physiol. 2022;13:964360. doi: 10.3389/fphys.2022.964360
- Baatarsuren M, Sengebaljir D, Ganbaatar C, et al. The trophectoderm could be better predictable parameter than inner cellular mass (ICM) for live birth rate and gender imbalance. Reprod Biol. 2022;22(1):100596. doi: 10.1016/j.repbio.2021.100596
- Hamidova A, İsenlik BS, Hidisoğlu E, et al. Investigation of the effects of trophectoderm morphology on obstetric outcomes in fifth day blastocyst transfer in patients undergoing in-vitro-fertilization. J Turk Ger Gynecol Assoc. 2022;23(3):167–176. doi: 10.4274/jtgga.galenos.2022.2021-10-8
- Utsuno H, Ishimaru T, Matsumoto M, et al. Morphometric assessment of blastocysts: relationship with the ongoing pregnancy rate. F S Rep. 2022;4(1):85–92. doi: 10.1016/j.xfre.2022.11.001
- Carson DD, Bagchi I, Dey SK, et al. Embryo implantation. Dev Biol. 2000;223(2):217–237. doi: 10.1006/dbio.2000.9767
- Han EJ, Park JK, Eum JH, Bang S, Kim JW, Lee WS. Spontaneously hatching human blastocyst is associated with high development potential and live birth rate in vitrified-warmed single blastocyst transfer: a retrospective cohort study. Int J Gynaecol Obstet. 2024;164(1):315–323. doi: 10.1002/ijgo.15084
- Kim JH, Park EA, Yoon TK, et al. In vitro fertilization outcomes of frozen-thawed embryo transfer with hatched blastocysts versus with hatching blastocysts. Reprod Sci. 2025;32(1):74–84. doi: 10.1007/s43032-024-01499-7
- Rodriguez-Purata J, Gingold J, Lee J, et al. Hatching status before embryo transfer is not correlated with implantation rate in chromosomally screened blastocysts. Hum Reprod. 2016;31(11):2458–2470. doi: 10.1093/humrep/dew205
- Canon CM, Hernandez-Nieto C, Slifkin RE, et al. Expansion grade of post thaw embryos and implantation potential. Fertil Steril. 2022;118(4):e83–e84.
- Michailov Y, Friedler S, Saar-Ryss B. Methods to improve frozen-thawed blastocyst transfer outcomes- the IVF laboratory perspective. Journal of IVF-Worldwide. 2023;1(1-3):1–13. doi: 10.46989/001c.87541
- Vanderzwalmen P, Zech N, Greindl AJ, Ectors F, Lejeune B. Cryopréservation des embryons humains par vitrification [Cryopreservation of human embryos by vitrification]. Gynecol Obstet Fertil. 2006;34(9):760–769. doi: 10.1016/j.gyobfe.2006.07.010
- Allen M, Hale L, Lantsberg D, et al. Post-warming embryo morphology is associated with live birth: a cohort study of single vitrified-warmed blastocyst transfer cycles. J Assist Reprod Genet. 2022;39(2):417–425. doi: 10.1007/s10815-021-02390-z
- Park JK, Ahn SY, Seok SH, et al. Clinical usability of embryo development using a combined qualitative and quantitative approach in a single vitrified-warmed blastocyst transfer: assessment of pre-vitrified blastocyst diameter and post-warmed blastocyst re-expansion speed. J Clin Med. 2022;11(23):7085. doi: 10.3390/jcm11237085
- Hershko-Klement A, Raviv S, Nemerovsky L, et al. Standardization of post-vitrification human blastocyst expansion as a tool for implantation prediction. J Clin Med. 2022;11(9):2673. doi: 10.3390/jcm11092673
- Rubio I, Galán A, Larreategui Z, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–1294.e5. doi: 10.1016/j.fertnstert.2014.07.738
- Salas-Vidal E, Lomelí H. Imaging filopodia dynamics in the mouse blastocyst. Dev Biol. 2004;265(1):75–89. doi: 10.1016/j.ydbio.2003.09.012
- Scott LA. Oocyte and embryo polarity. Semin Reprod Med. 2000;18(2):171–183. doi: 10.1055/s-2000-12556
- ESHRE Capri Workshop Group. Europe the continent with the lowest fertility. Hum Reprod Update. 2010;16(6):590–602. doi: 10.1093/humupd/dmq023
- Ebner T, Sesli Ö, Kresic S, et al. Time-lapse imaging of cytoplasmic strings at the blastocyst stage suggests their association with spontaneous blastocoel collapse. Reprod Biomed Online. 2020;40(2):191–199. doi: 10.1016/j.rbmo.2019.11.004
- Ma B-X, Jin L, Huang B, et al. Cytoplasmic string between ICM and mTE is a positive predictor of clinical pregnancy and live birth outcomes in elective frozen-thawed single blastocyst transfer cycles: a time-lapse study. 11 December 2020, PREPRINT (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-122470/v1
- Joo K, Nemes A, Dudas B, et al. The importance of cytoplasmic strings during early human embryonic development. Front Cell Dev Biol. 2023;11:1177279. doi: 10.3389/fcell.2023.1177279
- Park JK, Park JE, Bang S, et al. Development and validation of a nomogram for predicting ongoing pregnancy in single vitrified-warmed blastocyst embryo transfer cycles. Front Endocrinol (Lausanne). 2023;14:1257764. doi: 10.3389/fendo.2023.1257764
- Rajendran S, Brendel M, Barnes J, et al. Automatic ploidy prediction and quality assessment of human blastocyst using time-lapse imaging. Preprint. bioRxiv. 2023;2023.08.31.555741. doi: 10.1101/2023.08.31.555741
- Wang S, Fan J, Li H, Zhao M, Li X, Leung Chan DY. A dataset for deep learning based cleavage-stage blastocyst prediction with time-lapse images. bioRxiv. Published online December 27, 2023. doi: 10.1101/2023.12.26.573382
- Lee C, Kim G, Shin T, et al. Noninvasive time-lapse 3D subcellular analysis of embryo development for machine learning-enabled prediction of blastocyst formation. bioRxiv. Published online May 8, 2024. doi: 10.1101/2024.05.07.592317
- Nasiri N, Eftekhari-Yazdi P. An overview of the available methods for morphological scoring of pre-implantation embryos in in vitro fertilization. Cell J. 2015;16(4):392–405. doi: 10.22074/cellj.2015.486
- Hawke DC, Watson AJ, Betts DH. Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online. 2021;42(1):39–54. doi: 10.1016/j.rbmo.2020.11.011
- Rubio C, Rodrigo L, Garcia-Pascual C, et al. Clinical application of embryo aneuploidy testing by next-generation sequencing. Biol Reprod. 2019;101(6):1083–1090. doi: 10.1093/biolre/ioz019
- Rudenko EE, Trifonova NS, Demura TA, et al. The role of placental exosomes in the development of pregnancy complications. Gynecology, Obstetrics and Perinatology. 2018;17(2):89–97. doi: 10.20953/1726-1678-2018-2-89-96 EDN: UUTZVO
- Tiegs AW, Tao X, Zhan Y, et al. A multicenter, prospective, blinded, nonselection study evaluating the predictive value of an aneuploid diagnosis using a targeted next-generation sequencing-based preimplantation genetic testing for aneuploidy assay and impact of biopsy. Fertil Steril. 2021;115(3):627–637. doi: 10.1016/j.fertnstert.2020.07.052
- Gellersen B, Reimann K, Samalecos A, et al. Invasiveness of human endometrial stromal cells is promoted by decidualization and by trophoblast-derived signals. Hum Reprod. 2010;25(4):862–873. doi: 10.1093/humrep/dep468
- Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727. doi: 10.3390/cells8070727
- Vyas N, Dhawan J. Exosomes: mobile platforms for targeted and synergistic signaling across cell boundaries. Cell Mol Life Sci. 2017;74(9):1567–1576. doi: 10.1007/s00018-016-2413-9
- Giacomini E, Vago R, Sanchez AM, et al. Secretome of in vitro cultured human embryos contains extracellular vesicles that are uptaken by the maternal side. Sci Rep. 2017;7(1):5210. doi: 10.1038/s41598-017-05549-w
- Saadeldin IM, Kim SJ, Choi YB, Lee BC. Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication. Cell Reprogram. 2014;16(3):223–234. doi: 10.1089/cell.2014.0003
- Kreth S, Hübner M, Hinske LC. MicroRNAs as clinical biomarkers and therapeutic tools in perioperative medicine. Anesth Analg. 2018;126(2):670–681. doi: 10.1213/ANE.0000000000002444
- Gombos K, Oldal M, Kalacs KI, et al. Droplet digital PCR analysis of miR-191-3p in the spent blastocyst culture media might reflect the reproductive competence of the 3rd day human embryo. J Clin Chem Lab Med. 2019;2(2):1000132.
- Borges E Jr, Setti AS, Braga DP, et al. miR-142-3p as a biomarker of blastocyst implantation failure — A pilot study. JBRA Assist Reprod. 2016;20(4):200–205. doi: 10.5935/1518-0557.20160039
- Abu-Halima M, Häusler S, Backes C, et al. Micro-ribonucleic acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing In Vitro Fertilization. Sci Rep. 2017;7(1):13525. doi: 10.1038/s41598-017-13683-8
- Cimadomo D, Rienzi L, Giancani A, et al. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: searching for biomarkers of implantation. Hum Reprod. 2019;34(9):1746–1761. doi: 10.1093/humrep/dez119
- Pallinger E, Bognar Z, Bodis J, et al. A simple and rapid flow cytometry-based assay to identify a competent embryo prior to embryo transfer. Sci Rep. 2017;7:39927. doi: 10.1038/srep39927
- Horgan RP, Clancy OH, Myers JE, Baker PN. An overview of proteomic and metabolomic technologies and their application to pregnancy research. BJOG. 2009;116(2):173–181. doi: 10.1111/j.1471-0528.2008.01997.x
- Leese HJ, Baumann CG, Brison DR, et al. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14(12):667–672. doi: 10.1093/molehr/gan065
- Kanaka V, Proikakis S, Drakakis P, et al. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13(2):237–260. doi: 10.1007/s13167-022-00282-5
- Deng S, Xu Y, Warden AR, et al. Quantitative proteomics and metabolomics of culture medium from single human embryo reveal embryo quality-related multiomics biomarkers. Anal Chem. 2024;96(29):11832–11844. doi: 10.1021/acs.analchem.4c01494
- Ji H, Shi X, Wang J, et al. Peptidomic analysis of blastocyst culture medium and the effect of peptide derived from blastocyst culture medium on blastocyst formation and viability. Mol Reprod Dev. 2020;87(1):191–201. doi: 10.1002/mrd.23308
- Freis A, Roesner S, Marshall A, et al. Non-invasive embryo assessment: altered individual protein profile in spent culture media from embryos transferred at day 5. Reprod Sci. 2021;28(7):1866–1873. doi: 10.1007/s43032-020-00362-9
- Fujiwara H, Tatsumi K, Kosaka K, et al. Human blastocysts and endometrial epithelial cells express activated leukocyte cell adhesion molecule (ALCAM/CD166). J Clin Endocrinol Metab. 2003;88(7):3437–3443. doi: 10.1210/jc.2002-021888
- Liu X, Liu X, Liu W, et al. HOXA9 transcriptionally regulates the EPHB4 receptor to modulate trophoblast migration and invasion. Placenta. 2017;51:38–48. doi: 10.1016/j.placenta.2017.01.127
- Parris JJ, Cooke VG, Skarnes WC, et al. JAM-A expression during embryonic development. Dev Dyn. 2005;233(4):1517–1524. doi: 10.1002/dvdy.20481
- Feng Y, Ma X, Deng L, et al. Role of selectins and their ligands in human implantation stage. Glycobiology. 2017;27(5):385–391. doi: 10.1093/glycob/cwx009
- Chau SE, Murthi P, Wong MH, et al. Control of extravillous trophoblast function by the eotaxins CCL11, CCL24 and CCL26. Hum Reprod. 2013;28(6):1497–1507. doi: 10.1093/humrep/det060
- Zhao XM, Cui LS, Hao HS, et al. Transcriptome analyses of inner cell mass and trophectoderm cells isolated by magnetic-activated cell sorting from bovine blastocysts using single cell RNA-seq. Reprod Domest Anim. 2016;51(5):726–735. doi: 10.1111/rda.12737
- Xiong Y, Zhang D. Effect of retinoic acid on apoptosis and expression of Fas proteins in mouse blastocysts cultured in vitro. J Huazhong Univ Sci Technolog Med Sci. 2008;28(3):239–242. doi: 10.1007/s11596-008-0302-7
- Basak S, Das MK, Duttaroy AK. Fatty acid-induced angiogenesis in first trimester placental trophoblast cells: possible roles of cellular fatty acid-binding proteins. Life Sci. 2013;93(21):755–762. doi: 10.1016/j.lfs.2013.09.024
- Jeong W, Song G, Kim J. Mitogen activated protein kinase pathway-dependent effects of platelet-derived growth factor on migration of trophectoderm cells. Biochem Biophys Res Commun. 2015;463(4):575–581. doi: 10.1016/j.bbrc.2015.05.098
Дополнительные файлы
