Bacterial vaginosis biofilms: a target for therapeutic innovation
- Authors: Rossolovskaya K.A.1, Trifonova N.S.1, Gadaeva I.V.1, Spivak L.G.1
-
Affiliations:
- I.M. Sechenov First Moscow State Medical University
- Issue: Vol 11, No 4 (2024)
- Pages: 406-415
- Section: Reviews
- URL: https://journal-vniispk.ru/2313-8726/article/view/286420
- DOI: https://doi.org/10.17816/aog633897
- ID: 286420
Cite item
Abstract
Bacterial vaginosis (BV) is one of the most common vaginal microbiome abnormalities worldwide and a risk factor for various obstetric and gynecological complications.
Despite years of exploration, existing and quickly emerging clinical, laboratory and instrumental diagnostic methods, and progressive development of science in general, the etiology and pathogenesis of BV remain poorly understood. This is evidenced by the high incidence of chronic and/or recurrent course. There are standard therapeutic approaches aimed to eradicating the causative agent, but the level of efficacy remains questionable due to recurrent episodes. Therefore, further studies of this problem are warranted. Actually, it is evident that G. vaginalis forms polymicrobial biofilms on urogenital tract mucosa.
Biofilms represent associations of microorganisms that are adhered to the surface of the epithelium and connected together in the polymer matrix. Biofilms change the properties of the microorganisms involved into their structural frame and provide beneficial conditions for their interactions. This results in the increase of the existing pathogenic properties of bacteria associated with BV, as well as in the appearance of new features. Thus, the microorganisms become less susceptible to previously effective antibiotics and to aggressive media. Finally, this contributes to the recurrent course of the disease.
In most cases, treatment of BV is based on the immediate effect on the microorganisms, but in patients with confirmed biofilm-associated BV this strategy is not effective and is associated with BV recurrences. Thus, currently relevant issues include exploration of the causes of recurrent BV, development of anti-biofilm agents able to disrupt their matrix and release bacteria from their carcass, and introduction of these agents into clinical practice. This will increase the effectiveness of treatment.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Kseniya A. Rossolovskaya
I.M. Sechenov First Moscow State Medical University
Author for correspondence.
Email: dr.rossolovskaya@yandex.ru
ORCID iD: 0000-0002-7026-1607
SPIN-code: 4432-5748
Graduate Student
Russian Federation, MoscowNatalia S. Trifonova
I.M. Sechenov First Moscow State Medical University
Email: trifonova.nataly@mail.ru
ORCID iD: 0000-0002-2891-3421
SPIN-code: 4753-5430
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowIrina V. Gadaeva
I.M. Sechenov First Moscow State Medical University
Email: irina090765@gmail.com
ORCID iD: 0000-0003-0144-4984
SPIN-code: 9593-1990
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowLeonid G. Spivak
I.M. Sechenov First Moscow State Medical University
Email: leonid.spivak@gmail.com
ORCID iD: 0000-0003-1575-6268
SPIN-code: 5230-8811
MD, Dr. Sci. (Medicine), Professor
Russian Federation, MoscowReferences
- Letyaeva OI. Bacterial vaginosis: current opportunities and prospects for long-term control. Russian Bulletin of Obstetrician-Gynecologist. 2019;19(2):100–104. EDN: FHTCEF doi: 10.17116/rosakush201919021100
- Tabatabaei N, Eren AM, Barreiro LB, et al. Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. BJOG. 2019;126(3):349–358. doi: 10.1111/1471-0528.15299
- Johnston W, Ware A, Kuiters WF, et al. In vitro bacterial vaginosis biofilm community manipulation using endolysin therapy. Biofilm. 2022;5:100101. doi: 10.1016/j.bioflm.2022.100101
- Bretelle F, Loubière S, Desbriere R, et al. Effectiveness and costs of molecular screening and treatment for bacterial vaginosis to prevent preterm birth: The AuTop randomized clinical trial. JAMA Pediatr. 2023;177(9):894–902. doi: 10.1001/jamapediatrics.2023.2250
- Novikova SV, Tsivtsivadze EB, Fedotova AV. Bacterial vaginosis as a typical biofilm infection. Russian Bulletin of Obstetrician-Gynecologist. 2018;18(4):97–100. EDN: XWAUCT doi: 10.17116/rosakush201818497
- Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol. 2013;209(6):505–523. doi: 10.1016/j.ajog.2013.05.006
- Peebles K, Velloza J, Balkus JE, et al. High global burden and costs of bacterial vaginosis: a systematic review and meta-analysis. Sex Transm Dis. 2019;46(5):304–311. doi: 10.1097/OLQ.0000000000000972
- Dobrokhotova YuE, Kazantseva VD, Bondarenko KR. Bacterial vaginosis: modern anti-relapse treatment tactics. RMJ. 2022;(8):61–65. EDN: GVQLAZ
- Javed A, Parvaiz F, Manzoor S. Bacterial vaginosis: An insight into the prevalence, alternative treatments regimen and its associated resistance patterns. Microb Pathog. 2019;127:21–30. doi: 10.1016/j.micpath.2018.11.046
- Reiter S, Kellogg Spadt S. Bacterial vaginosis: a primer for clinicians. Postgrad Med. 2019;131(1):8–18. doi: 10.1080/00325481.2019.1546534
- Muzny CA, Cerca N, Elnaggar JH, et al. State of the Art for Diagnosis of Bacterial Vaginosis. J Clin Microbiol. 2023;61(8):e0083722. doi: 10.1128/jcm.00837-22
- Bacterial vaginosis: Clinical recommendations under. Moscow, 2022 [cited 2024 Jun 02]. Available from: https://cr.minzdrav.gov.ru/recomend/206_2 (In Russ.)
- Chen C, Song X, Wei W, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 2017;8(1):875. doi: 10.1038/s41467-017-00901-0
- Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host-pathogen interactions during female genital tract infections. Trends Microbiol. 2019;27(12):982–996. doi: 10.1016/j.tim.2019.07.006
- Döderlein A. Das scheidensekret und seine bedeutung für das puerperalfieber. Leipzig: Verlag von Eduard Besold; 1892.
- Leopold S. Heretofore undescribed organism isolated from the genitourinary system. US Armed Forces Med. 1953;4(2):263–266.
- Gardner HL, Dukes CD. Haemophilus vaginalis vaginitis: a newly defined specific infection previously classified non-specific vaginitis. Am J Obstet Gynecol. 1955;69(5):962–976.
- Zinnemann K, Turnerg C. The taxonomic position of ‘Haemophilus vaginalis’ (Corynebacterium vaginale). J Pathol Bacteriol. 1963;85(1):213–219. doi: 10.1002/PATH.1700850120
- Greenwood JR, Pickett MJ. Transfer of Haemophilus vaginalis Gardner and Dukes to a new genus, Gardnerella: G. vaginalis (Gardner and Dukes). Int J Syst Bacteriol. 1980;30(1):170–178. doi: 10.1099/00207713-30-1-170
- Piot P, van Dyck E, Goodfellow M, Falkow S. A taxonomic study of Gardnerella vaginalis (Haemophilus vaginalis) Gardner and Dukes 1955. J Gen Microbiol. 1980;119(2):373–396. doi: 10.1099/00221287-119-2-373
- Piot P. Gardnerella, streptobacillus, spirillum, and calymmatobacterium. In: Balows A, Hausler WJ Jr, Herrmann KL, Isenberg HD, Shadomy HJ, editors. Manual of Clinical Microbiology. 5th ed. Washington, D.C: American Society for Microbiology; 1991:483–487.
- Sadhu K, Domingue PA, Chow AW, et al. Gardnerella vaginalis has a Gram-positive cell-wall ultrastructure and lacks classical cell-wall lipopolysaccharide. J. Med. Microbiol. 1989;29(3):229–235. doi: 10.1099/00222615-29-3-229
- Scott TG, Curran B, Smyth CJ. Electron microscopy of adhesive interactions between Gardnerella vaginalis and vaginal epithelial cells, McCoy cells and human red blood cells. J Gen Microbiol. 1989;135(3):475–480. doi: 10.1099/00221287-135-3-475
- Taylor-Robinson D. The bacteriology of Gardnerella vaginalis. Scand J Urol. Nephrol Suppl. 1984;86:41–55.
- Ilyina TS, Romanova YuM. The role of bacterial biofilms in chronic infectious processes and the search for methods to combat them. Molecular Genetics, Microbiology and Virology. 2021;39(2):14–24. EDN: RHLJAM doi: 10.17116/molgen20213902114
- Khryanin AA. Microbial biofilms: modern concepts. Antibiotics and Chemotherapy. 2020;65(5–6):70–77. EDN: NQITOE doi: 10.37489/0235-2990-2020-65-5-6-70-77
- Jung HS, Ehlers MM, Lombaard H, et al. Etiology of bacterial vaginosis and polymicrobial biofilm formation. Crit Rev Microbiol. 2017;43(6):651–667. doi: 10.1080/1040841X.2017.1291579
- Pestrikova TYu, Yurasova EA, Kotelnikova AV, et al. Modern approach to treatment of a recurrent bacterial vaginosis at women of the reproductive period. Gynecology. 2018;20(2):55–58. EDN: XTGRVB doi: 10.26442/2079-5696_2018.2.55-58
- Nickel JC, Ruseska I, Wright JB, Costerton JW. Tobramycin resistance of cells of Pseudomonas aeruginosa growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother. 1985;27(4):619–624. doi: 10.1128/AAC.27.4.619
- Berezovskaya ES, Makarov IO, Gomberg MA, et al. Biofilm formation at the bacterial vaginosis. Obstetrics, Gynecology and Reproduction. 2013;7(2):34–36. EDN: RRPOER
- Simões M, Simões LC, Vieira MJ. Species association increases biofilm resistance to chemical and mechanical treatments. Water Res. 2009;43(1):229–237. doi: 10.1016/j.watres.2008.10.010
- Khan J, Tarar SM, Gul I, et al. Challenges of antibiotic resistance biofilms and potential combating strategies: a review. 3 Biotech. 2021;11(4):169. doi: 10.1007/s13205-021-02707-w
- Michaelis C, Grohmann E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics (Basel). 2023;12(2):328. doi: 10.3390/antibiotics12020328
- Bonnardel F, Haslam SM, Dell A, et al. Proteome-wide prediction of bacterial carbohydrate-binding proteins as a tool for understanding commensal and pathogen colonisation of the vaginal microbiome. NPJ Biofilms Microbiomes. 2021;7(1):49. doi: 10.1038/s41522-021-00220-9
- Marín E, Haesaert A, Padilla L, et al. Unraveling Gardnerella vaginalis surface proteins using cell shaving proteomics. Front Microbiol. 2018;9:975. doi: 10.3389/fmicb.2018.00975
- Hardy L, Jespers V, Abdellati S, et al. A fruitful alliance: the synergy between Atopobium vaginae and Gardnerella vaginalis in bacterial vaginosis-associated biofilm. Sex Transm Infect. 2016;92(7):487–491. doi: 10.1136/sextrans-2015-052475
- Castro J, Machado D, Cerca N. Unveiling the role of Gardnerella vaginalis in polymicrobial Bacterial Vaginosis biofilms: the impact of other vaginal pathogens living as neighbors. ISME J. 2019;13(5):1306–1317. doi: 10.1038/s41396-018-0337-0
- Castro J, Cerca N. BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dual-species biofilms. Anaerobe. 2015;36:56–59. doi: 10.1016/j.anaerobe.2015.10.008
- Schwebke JR, Muzny CA, Josey WE. Role of Gardnerella vaginalis in the pathogenesis of bacterial vaginosis: a conceptual model. J Infect Dis. 2014;210(3):338–343. doi: 10.1093/infdis/jiu089
- Shvartsman E, Hill JE, Sandstrom P, MacDonald KS. Gardnerella revisited: species heterogeneity, virulence factors, mucosal immune responses, and contributions to bacterial vaginosis. Infect Immun. 2023;91(5):e0039022. doi: 10.1128/iai.00390-22
- Coudray MS, Madhivanan P. Bacterial vaginosis — A brief synopsis of the literature. Eur J Obstet Gynecol Reprod Biol. 2020;245:143–148. doi: 10.1016/j.ejogrb.2019.12.035
- Abaturov AE. Polysaccharide-degrading enzymes as agents dispersing bacterial biofilms. Zdorov’e Rebenka. 2020;15(4):271–278. EDN: WKPGMH doi: 10.22141/2224-0551.15.4.2020.208478
- Marshall AO. Managing recurrent bacterial vaginosis: insights for busy providers. Sex Med Rev. 2015;3(2):88–92. doi: 10.1002/smrj.45
Supplementary files
