Mobile Application for the Automated Diagnosis of Diseases of Agricultural Crops and the Selection of Recommendations for Their Treatment
- Authors: Torkunova J.V.1,2, Ivanov D.J.1
-
Affiliations:
- Kazan State Power Engineering University
- Sochi State University
- Issue: Vol 14, No 1 (2024)
- Pages: 168-183
- Section: Articles
- Published: 31.03.2024
- URL: https://journal-vniispk.ru/2328-1391/article/view/299568
- DOI: https://doi.org/10.12731/2227-930X-2024-14-1-276
- EDN: https://elibrary.ru/PKYJLA
- ID: 299568
Cite item
Full Text
Abstract
The aim of the study was a mobile development based on computer vision technologies and site parsing, which allows automating the process of diagnosing diseases of agricultural crops and issuing recommendations for treatment. The article discusses methods for recognizing plant diseases using computer vision, describes the principles of convolutional neural networks, selects the most appropriate machine learning model based on the accuracy, speed and efficiency of the model in conditions of limited resources of a mobile device, describes the tools: libraries and frameworks used for development. The detailed architecture of the application is presented, as well as the results of the developed software are demonstrated. A new contribution to the development of this topic is the experimental substantiation of the choice of a neural network model based on the analysis of its effectiveness on a prepared dataset, as well as the introduction of an automatic search for recommendations for a certain disease of agriculture. In the future, it is planned to introduce a voice assistant into this mobile application.
About the authors
Julia V. Torkunova
Kazan State Power Engineering University; Sochi State University
Author for correspondence.
Email: torkynova@mail.ru
ORCID iD: 0000-0001-7642-6663
SPIN-code: 7422-4238
Professor of the Department of Information Technologies and Intelligent Systems, Doctor of Pedagogical Sciences
Russian Federation, 51, Krasnoselskaya Str., Kazan, Republic of Tatarstan, 420066, Russian Federa-tion; 94, Plastunskaya Str., Sochi, Krasnodar region, 354000, Russian FederationDmitrij Je. Ivanov
Kazan State Power Engineering University
Email: alwayswannafly070400@mail.ru
Magister
Russian Federation, 51, Krasnoselskaya Str., Kazan, Republic of Tatarstan, 420066, Russian FederationReferences
- Avetisjan T.V., L'vovich Ja.E., Preobrazhenskij A.P. Razrabotka podsistemy raspoznanija signalov slozhnoj formy [Development of a subsystem for rec-ognizing complex-shaped signals]. International Journal of Advanced Studies, 2023, vol. 13, no. 1, pp. 102-114. https://doi.org/10.12731/2227-930X-2023-13-1-102-114
- The doctrine of food security. URL://www.scrf.gov.ru/security/economic/document108/ (accessed February 01, 2024)
- Documentation Koin. URL://insert-koin.io/ (accessed February 01, 2024).
- Osovskij S. Nejronnye seti dlja obrabotki informacii [Neural networks for in-formation processing]. M., 2019, 448 p.
- Jupyter Notebook. URL://jupyter.org/ (accessed February 21, 2024)
- Proektirovanie informacionnyh sistem: uchebnik i praktikum dlja vuzov [Infor-mation Systems design: textbook and workshop for universities] / D.V.Chistov, P.P.Mel'nikov, A.V.Zolotarjuk, N.B. Nicheporuk; ed. D.V.Chistov. Moscow: Jurajt Publ., 2024, 293 p.
- Skin Dzh., Grinhol D. Kotlin. Programmirovanie dlja professionalov [Kotlin. Programming for professionals]. SPb.: Piter, 2023, 464 p.
- Torkunova Ju.V., Korosteleva D.M., Krivonogova A.E. Formirovanie cifrovyh navykov v jelektronnoj informacionno-obrazovatel'noj srede s ispol'zovaniem nejrosetevyh tehnologij [Formation of digital skills in an elec-tronic information and educational environment using neural network tech-nologies]. Sovremennoe pedagogicheskoe obrazovanie, 2020, no. 5, pp.107-110.
- Torkunova Ju.V., Milovanov D.V. Optimizacija nejronnyh setej: metody i ih sravnenie na primere intellektual'nogo analiza teksta [Optimization of neural networks: methods and their comparison on the example of text mining]. In-ternational Journal of Advanced Studies, 2023, vol. 13, no. 4, pp. 142-158. https://doi.org/10.12731/2227-930X2023-13-4-142-158
- Castillo J. Jetpack Compose internals. Leanpub, 2021, 121 p.
- Moskała M. Kotlin Coroutines: Deep Dive (Kotlin for Developers). 2022.
- Nguyen C., Sagan V., Maimaitiyiming M., Maimaitijiang M., Bhadra S., Kwasniewski M.T. Early detection of plant viral disease using hyperspectral imaging and deep learning. Sensors, 2021, vol. 21, no. 3, 742 p.
- Pyataeva A., Merko M., Zhukovskaya V., Pinchuk I., Eliseeva M. Raspoz-navanie rukopisnoj podpisi s primeneniem nejronnyh setej [Handwritten sig-nature recognition using neural networks]. International Journal of Advanced Studies, 2023, vol. 13, no. 3, pp. 130-148. https://doi.org/10.12731/2227-930X-2023-13-3-130-148
- TensorFlow Overview URL: //www.tensorflow.org/overview. (accessed Feb-ruary 3, 2024)
- What is a Swimlane Diagram. URL: https://www.lucidchart.com/pages/tutorial/swimlane-diagram (accessed Feb-ruary 3, 2024)
Supplementary files
