Мобильное приложение по автоматизированной диагностике болезней агрокультур и подбору рекомендаций их лечения

Обложка

Цитировать

Полный текст

Аннотация

Целью исследования была мобильная разработка на основе технологий компьютерного зрения и парсинга сайтов, позволяющая автоматизировать процесс диагностики болезней агрокультур и выдачи рекомендаций по лечению.  В статье рассмотрены методы распознавания болезней растений с помощью компьютерного зрения, описаны принципы работы сверточных нейронных сетей, выбрана  наиболее подходящая модель машинного обучения, основанная на точности, скорости и эффективности модели в условиях ограниченных ресурсов мобильного устройства, описан инструментарий: библиотеки и фреймворки, использованные для разработки. Представлена  развернутая архитектура работы приложения, а так же продемонстрированы результаты работы разработанного программного обеспечения. Новым вкладом в развитие данной тематики является экспериментальное обоснование выбора модели нейронной сети на основе анализа ее результативности на подготовленном датасете, а так же внедрение автоматического поиска рекомендаций по определенной болезни агрокультуры. В дальнейшем в данное мобильное приложение планируется переход на мультиплотформенность и расширение функционала.

Об авторах

Юлия Владимировна Торкунова

Казанский государственный энергетический университет; Сочинский госу-дарственный университет

Автор, ответственный за переписку.
Email: torkynova@mail.ru
ORCID iD: 0000-0001-7642-6663
SPIN-код: 7422-4238

профессор кафедры «Информационные технологии и интеллектуальные системы», доктор педагогических наук

Россия, ул. Красносельская, 51, г. Казань, Республика Татарстан, 420066, Российская Федерация; ул. Пластунская, 94, г. Сочи, Краснодарский край, 354000, Российская Федерация

Дмитрий Эдуардович Иванов

Казанский государственный энергетический университет

Email: alwayswannafly070400@mail.ru

магистр

Россия, ул. Красносельская, 51, г. Казань, Республика Татарстан, 420066, Российская Федерация

Список литературы

  1. Аветисян Т. В., Львович Я. Е., Преображенский А. П. Разработка подси-стемы распознания сигналов сложной формы // International Journal of Advanced Studies. 2023. Т. 13, № 1. С. 102-114. https://doi.org/10.12731/2227-930X-2023-13-1-102-114
  2. Доктрина продовольственной безопасности. URL://www.scrf.gov.ru/security/economic/document108/ (дата обращения 01.02.2024)
  3. Документация Koin. URL://insert-koin.io/ (дата обращения 01.02.2024).
  4. Осовский С. Нейронные сети для обработки информации. М.: Горячая линия. Телеком. 2019. 448 с.
  5. Jupyter Notebook. URL://jupyter.org/ (дата обращения 21.02.2024).
  6. Проектирование информационных систем: учебник и практикум для ву-зов/ Чистов Д.В., Мельников П.П. , Золотарюк А.В., Ничепорук Н.Б.; под общей редакцией Чистова Д.В. 2-е изд., перераб. и доп. Москва: Изда-тельство Юрайт, 2024. 293 с.
  7. Скин Дж., Гринхол Д. Kotlin. Программирование для профессионалов. СПб.: Питер, 2023. 464 c.
  8. Торкунова Ю.В., Коростелева Д.М., Кривоногова А.Е. Формирование цифровых навыков в электронной информационно-образовательной среде с использованием нейросетевых технологий // Современное педагогиче-ское образование. 2020. №5. С. 107-110.
  9. Торкунова Ю.В., Милованов Д.В. Оптимизация нейронных сетей: методы и их сравнение на примере интеллектуального анализа текста // International Journal of Advanced Studies. 2023. Т. 13, № 4. С. 142-158. https://doi.org/10.12731/2227-930X2023-13-4-142-158
  10. Castillo J. Jetpack Compose internals / J. Castillo. Leanpub, 2021. 121 с.
  11. Moskała M. Kotlin Coroutines: Deep Dive (Kotlin for Developers) / M. Mos-kała. 2022.
  12. Nguyen C., Sagan V., Maimaitiyiming M., Maimaitijiang M., Bhadra S., Kwasniewski M.T. Early detection of plant viral disease using hyperspectral imaging and deep learning // Sensors. 2021. Vol. 21, № 3. 742 с.
  13. Пятаева А., Мерко М., Жуковская В., Пинчук, И. Елисеева М. Распозна-вание рукописной подписи с применением нейронных сетей // International Journal of Advanced Studies. 2023. Т. 13, № 3. С. 130-148. https://doi.org/10.12731/2227-930X-2023-13-3-130-148
  14. TensorFlow Overview. URL: https://www.tensorflow.org/overview (дата об-ращения 03.02.2024)
  15. What is a Swimlane Diagram. URL: https://www.lucidchart.com/pages/tutorial/swimlane-diagram (дата обраще-ния 03.02.2024)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Торкунова Ю.В., Иванов Д.Э., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».