Об одном методе решения начально-краевой задачи для уравнения Гарднера
- Авторы: Безродных С.И.1, Пикулин С.В.1
-
Учреждения:
- Федеральный исследовательский центр «Информатика и управление» РАН
- Выпуск: Том 71, № 3 (2025): Труды Крымской осенней математической школы-симпозиума
- Страницы: 353-369
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2413-3639/article/view/347341
- DOI: https://doi.org/10.22363/2413-3639-2025-71-3-353-369
- EDN: https://elibrary.ru/FAKSTK
- ID: 347341
Цитировать
Полный текст
Аннотация
Рассматривается вопрос об эффективном решении начально-краевой задачи для уравнения Гарднера - пространственно одномерного нелинейного эволюционного уравнения, описывающего широкий класс дисперсионных автоволновых процессов. В работе предложен численно-аналитический метод, основанный на сочетании явной и неявной схемы дискретизации по времени для различных членов дифференциального оператора. Для решения последовательности вспомогательных линейных задач разработан новый эффективный алгоритм, опирающийся на аналитические представления с использованием явного вида фундаментальной системы решений. Рассмотрен пример численного решения начально-краевой задачи для уравнения Гарднера и проведено сопоставление результата с известным точным решением типа уединенной бегущей волны.
Об авторах
С. И. Безродных
Федеральный исследовательский центр «Информатика и управление» РАН
Автор, ответственный за переписку.
Email: sbezrodnykh@mail.ru
Москва, Россия
С. В. Пикулин
Федеральный исследовательский центр «Информатика и управление» РАН
Email: spikulin@gmail.com
Москва, Россия
Список литературы
- Безродных С. И., Власов В. И. Краевая задача для моделирования физических полей в полупроводниковом диоде// Журн. выч. мат. и мат. физ. - 2004. - 44, № 12. - С. 2220-2251.
- Безродных С. И., Власов В. И. Аналитико-численный метод расчета взаимодействия физических полей в полупроводниковом диоде// Мат. модел. - 2015. - 27, № 7. - С. 15-24.
- Безродных С. И., Пикулин С. В. Численно-аналитический метод для уравнения Бюргерса с периодическим краевым условием// Соврем. мат. Фундам. направл. - 2023. - 69, № 2. - С. 208-223.
- Безродных С. И., Пикулин С. В. Численно-аналитический метод для нелинейных уравнений типа Колмогорова-Петровского-Пискунова// Журн. выч. мат. и мат. физ. - 2024. - 64, № 11. - С. 2017- 2042.
- Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П. Теория солитонов. Метод обратной задачи. - М.: Наука, 1980.
- Наймарк М. А. Линейные дифференциальные операторы. - М.: Наука, 1969.
- Пелиновский Е. Н., Слюняев А. В. Генерация и взаимодействие солитонов большой амплитуды// Письма в ЖЭТФ. - 1998. - 67, № 9. - С. 628-633.
- Самарский А. А. Теория разностных схем. - М.: Наука, 1989.
- Филиппов А. Ф. Дифференциальные уравнения с разрывной правой частью. - М.: Наука, 1985.
- Ablowitz M. A., Clarkson P. A. Solitons, nonlinear evolution equations and inverse scattering. - Cambridge: Cambridge Univ. Press, 1991.
- Ak T., Triki H., Dhawan S. et al. Theoretical and numerical investigations on solitary wave solutions of Gardner equation// Eur. Phys. J. Plus. - 2018. - 133. - 382.
- Ascher U. M., Ruuth S. J., Wetton B. T. R. Implicit-explicit methods for time-dependent partial differential equations// SIAM J. Numer. Anal. - 1995. - 32, № 3. - С. 797-823.
- Dahiya S., Singh A., Singh S. P. Study of the Gardner equation with homogeneous boundary conditions via fourth order modified cubic B-spline collocation method// Comput. Math. Math. Phys. - 2023. - 63, № 12. - С. 2474-2491.
- Demler E., Maltsev A. Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices// Ann. Phys. - 2011. - 326, № 7. - С. 1775-1805.
- Grimshaw R. Internal solitary waves// В сб.: «Environmental stratified flows. Topics in environmental fluid mechanics». - Boston: Springer, 2003. - С. 1-27.
- Grimshaw R., Pelinovsky E., Talipova T., Kurkin A. Simulation of the transformation of internal solitary waves on oceanic shelves// J. Phys. Oceanogr. - 2004. - 34. - С. 2774-2791.
- Holmer J. The initial-boundary value problem for the Korteweg-de Vries equation// Commun. Part. Differ. Equ. - 2006. - 31, № 8. - С. 1151-1190.
- Hundsdorfer W., Verwer J. Numerical solutions of time-dependent advection-diffusion-reaction equations. - Berlin-Heidelberg: Springer, 2003.
- Kamchatnov A. M. Undular bore theory for the Gardner equation// Phys. Rev. E. - 2012. - № 86. - 036605.
- Miles J. W. On internal solitary waves// Tellus. - 1979. - 31. - С. 456-462.
- Miura R., Gardner C., Kruskal M. Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion// J. Math. Phys. - 1968. - 9. - С. 1205-1209.
- Ruderman M. S., Talipov T., Pelinovsky E. Dynamics of modulationally unstable ionacoustic wavepackets in plasmas with negative ions// J. Plasma Phys. - 2008. - 74, № 5. - С. 639-656.
- Wang K. J. Traveling wave solutions of the Gardner equation in dusty plasmas// Results Phys. - 2022. - 33. - 105207.
- Watanabe S. Ion acoustic soliton in plasma with negative ion// J. Phys. Soc. Japan. - 1984. - 53. - С. 950- 956.
- Wazwaz A. M. New solitons and kink solutions for the Gardner equation// Commun. Nonlinear Sci. Numer. Simul. - 2007. - 12, № 8. - С. 1395-1404.
Дополнительные файлы

