Agro-industrial by-products as a feeding strategy for producing functional milk

Cover Page

Cite item

Full Text

Abstract

Agro-industrial by-products contain valuable components such as polyphenols that can play a significant role in producing milk with specific properties through rumen fermentation. In Egypt, the buffalo milk chain has a potential market, which is larger than that for cow milk, especially in small villages. Therefore, this study aims to explore different feed ingredients from agro-waste for enhancing the functional properties of raw buffalo milk including polyphenols, flavonoids, vitamins A, C, α-tocopherol, and conjugated linoleic acid (CLA) contents. For this purpose, thirty dairy water buffalo ( Bubalus bubalis ) with a weight of about 520 kg were randomly divided into five groups of six animals each. The first group was fed a basal diet (silage) without agro-waste, while the other four groups were fed the basal diet after replacing 25% of the diet with different agro-wastes including barley (snack/bakery waste), sweet potato/carrot, biscuit/cake waste and tomato pomace. The feeding experimental period lasted 90 days, then milk samples (n = 150) were collected. Our results show that adding sweet potato/ carrot or tomato pomace to the basal diet enhanced the contents of vitamins A, C, and phenolic compounds reflecting on the enhancement of the antioxidant capacity of raw buffalo milk. Concerning the CLA content, the milk samples collected from buffalo fed the basal diet fortified with tomato pomace and biscuit/cake waste had the highest CLA and α-tocopherol content. Therefore, this study recommends using the tested agro-waste ingredients for producing functional buffalo milk, especially for small-medium milk producers.

About the authors

A. A. Abd El-Maksoud

Dairy Science Department, Faculty of Agriculture, Cairo University

Author for correspondence.
Email: Hasan.awny@agr.cu.edu.eg
Ahmed A. Abd El-Maksoud is affiliated with the Dairy Science Department at the Faculty of Agriculture, Cairo University, Giza, Egypt. 1 Gamaa Street, 12613, Giza

M. A. Radwan

Animal Production Research Department, Faculty of Agriculture, Cairo University

Email: Hasan.awny@agr.cu.edu.eg
M. A. Radwan is affiliated with the Animal Production Research Department at the Faculty of Agriculture, Cairo University, Giza, Egypt. 1 Gamaa Street, 12613, Giza

H. A. F. Rahmy

Animal Production Research Department, Faculty of Agriculture, Cairo University

Email: Hasan.awny@agr.cu.edu.eg
Hassan A. F. Rahmy is affiliated with the Animal Production Research Department at the Faculty of Agriculture, Cairo University, and is involved in research related to agro-industrial by-products and their role in producing functional milk. 1 Gamaa Street, 12613, Giza

F. M. F. Elshaghabee

Dairy Science Department, Faculty of Agriculture, Cairo University

Email: Hasan.awny@agr.cu.edu.eg
Fouad M. F. Elshaghabee is affiliated with the Dairy Science Department at the Faculty of Agriculture, Cairo University, Giza, Egypt. 1 Gamaa Street, 12613, Giza

A. M. Hamed

Dairy Science Department, Faculty of Agriculture, Cairo University

Email: Hasan.awny@agr.cu.edu.eg
Dairy Science Department, Faculty of Agriculture, Cairo University. 1 Gamaa Street, 12613, Giza

References

  1. Shirahigue, L. D., Ceccato-Antonini, S. R. (2020). Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Ciencia Rural, 50(4), Article e20190857. https://doi.org/10.1590/0103-8478cr20190857
  2. Mirabella, N., Castellani, V., Sala, S. (2014). Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production, 65, 28-41. https://doi.org/10.1016/j.jclepro.2013.10.051
  3. Romero-Huelva M., Ramos-Morales E., Molina-Alcaide E. (2012). Nutrient utilization, ruminal fermentation, microbial abundances, and milk yield and composition in dairy goats fed diets including tomato and cucumber waste fruits. Journal of Dairy Science, 95(10), 6015-6026. https://doi.org/10.3168/jds.2012-5573
  4. Brennan, A, Browne, S. (2021). Food waste and nutrition quality in the context of public health: A scoping review. International Journal of Environmental Research and Public Health, 18(10), Article 5379. https://doi.org/10.3390/ijerph18105379
  5. Eastridge, M. L. (2006). Major advances in applied dairy cattle nutrition. Journal of Dairy Science, 89(4), 1311-1323. https://doi.org/10.3168/jds.S0022-0302(06)72199-3
  6. Bampidis, V.A., Robinson, P.H. (2006). Citrus byproducts as ruminant feeds. A review. Animal Feed Science and Technology, 128(3), 175-217. https://doi.org/10.1016/j.anifeedsci.2005.12.002
  7. Fathy, H.M., Abd El-Maksoud, A.A., Cheng, W., Elshaghabee, F.M.F. (2022). Value-Added Utilization of citrus peels in improving functional properties and probiotic viability of Acidophilus-bifidus-thermophilus (abt)-type synbiotic yoghurt during cold storage. Foods, 11(17), Article 2677. https://doi.org/10.3390/foods11172677
  8. Qi, W., Xue, M.-Y., Jia, M.-H., Zhang, S., Yan, Q., Sun, H.-Z. (2024). Understanding the functionality of the rumen microbiota: Searching for better opportunities for rumen microbial manipulation. Animal Bioscience, 37(2), 370-384. https://doi.org/10.5713%2Fab.23.0308
  9. Kaltenegger, A., Humer, E., Stauder, A., Zebeli, Q. (2020). Feeding of bakery by-products in the replacement of grains enhanced milk performance, modulated blood metabolic profile, and lowered the risk of rumen acidosis in dairy cows. Journal of Dairy Science, 103(11), 10122-10135. https://doi.org/10.3168/jds.2020-18425
  10. Marcos, C.N., de Evan, T., Molina-Alcaide, E., Carro, M.D. (2019). Nutritive value of tomato pomace for ruminants and its influence on in vitro methane production. Animals, 9, Article 343. https://doi.org/10.3390/ani9060343
  11. Soto, E.C., Khelil, H., Carro, M.D., Yanez-Ruiz, D.R., Molina-Alcaide, E. (2015). Use of tomato and cucumber waste fruits in goat diets: Effects on rumen fermentation and microbial communities in batch and continuous cultures. The Journal of Agricultural Science, 153, 343-352. https://doi.org/10.1017/S0021859614000380
  12. Mizael, W.C.F., Costa, R.G., Cruz, G.R.D., de Carvalho F. F.R., Ribeiro, N.L., Lima, A. et al. (2020). Effect of the use of tomato pomace on feeding and performance of lactating goats. Animals, 10(9), Article 1574. https://doi.org/10.3390/ani10091574
  13. Phesatcha, B., Phesatcha, K., Viennasay, B., Thao, N. T., Wanapat, M. (2021). Feed intake and nutrient digestibility, rumen fermentation profiles, milk yield and compositions of lactating dairy cows supplemented by Flemingia macrophylla pellet. Tropical Animal Science Journal, 44(3), 288-296. https://doi.org/10.5398/tasj.2021.44.3.288
  14. Elshaghabee, F.M.F., Abd El-Maksoud, A.A., Alharbi, S.A., Alfarraj, S., Mohamed, M.S.M. (2021). Fortification of acidophilus-bifidus-thermophilus (abt) fermented milk with heat-treated industrial yeast enhances its selected properties. Molecules, 26(13), Article 3876. https://doi.org/10.3390/molecules26133876
  15. Santana, A., Cajarville, C., Mendoza, A., Repetto, J. L. (2017). Combination of legume-based herbage and total mixed ration (TMR) maintains intake and nutrient utilization of TMR and improves nitrogen utilization of herbage in heifers. Animal, 11(4), 616-624. https://doi.org/10.1017/S1751731116001956
  16. Van Soest, P.J., Robertson, J.B., Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  17. AOAC. (2005). Methods of Analysis. Vol. 1: Agriculture chemicals, Contaminants, Drugs. 16th ed. Association of official Analytical chemists, Washingon, D.D., USA.
  18. Olagunju, A., Muhammad, A., Aliyu, S., Mada, S. B., Isah, R., Abdullahi, S. A. et al. (2013). Nutritional values of powdered milk commercially consumed in West Africa. International Journal of Food Safety Nutrition and Public Health, 4(2), 55-61.
  19. Chun, O. K., Kim, D. -O., Lee, C. Y. (2003). Superoxide radical scavenging activity of the major polyphenols in fresh plums. Journal of Agricultural and Food Chemistry, 51(27), 8067-8072. https://doi.org/10.1021/jf034740d
  20. Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  21. Kamangar, T., Fawzf, A. B. (1978). Spectrophotometric determination of vitamin A in oils and fats. Journal of the Association of Official Analytical Chemists, 61(3), 753-755.
  22. Erickson, D. R., Dunkley, W. L. (1964). Spectrophotometric determination of tocopherol in milk and milk lipides. Analytical Chemistry, 36(6), 1055-1058.
  23. Abd El-Salam, M. H., El-Shibiny, S. (2014). Conjugated linoleic acid and vaccenic acid contents in cheeses: An overview from the literature. Journal of Food Composition and Analysis, 33(1), 117-126. https://doi.org/10.1016/j.jfca.2012.08.004
  24. Tafesh, A., Najami, N., Jadoun, J., Halahlih, F., Riepl, H., Azaizeh, H. (2011). Synergistic antibacterial effects of polyphenolic compounds from olive mill waste-water. Evidence-Based Complementary and Alternative Medicine, 2011, Article 432021. https://doi.org/10.1155/2011/431021
  25. Wang, X., Cheng, W., Wang, X., Wang, Q., Abd El-Maksoud, A. A., Wang, M., Cheng, K. W. (2022). Inhibition effects of typical antioxidants on the formation of glycidyl esters in rice oil and chemical model during high temperature exposure. Lebensmittel Wissenschaft and Technologie, 166, 113794. https://doi.org/10.1016/j.lwt.2022.113794
  26. El-Maksoud, A. A. A., Makhlouf, A. I., Altemimi, A. B., El-Ghany, I. H. A., Nassrallah, A., Cacciola, F., Abedelmaksoud, T. G. (2021). Nano milk protein-mucilage complexes: Characterization and anticancer effect. Molecules, 26(21), 6372. https://doi.org/10.3390/molecules26216372
  27. Soltan, M.A. (2002). Using of tomato and potato by-products as non-conventional ingredients in Nile tilapia, Oreochromis niloticus diets. Annals of Agricultural Science, Moshtohor, 40(4), 2081-2096.
  28. Alicata, M. L., Bonanno, A., Glaccone, P., Leto, G., Battaglia, D. (1988). Use of tomato skins and seeds in the feeding of male rabbits. Coltura Rivista di Coniglicoltura, 25(1), 33-36.
  29. Khadr, N. A., Abdel-Fattah, F. A. I. (2008). Tomato waste as an unusual feedstuff for rabbit 1-response of growing rabbits to diets containing tomato waste. Zagazig Veterinary Journal, 36(1), 29-48.
  30. Mennani, A., Arbouche, Y., Arbouche, R., Arbouche, F., Ouzzir, L. (2021). Dehy-drated tomato pulp in rabbit feed: Effects of incorporation rate on growth performance, carcass yield, meat quality and economic efficiency. Journal of Animal and Feed Sciences, 30(3) 271-278. https://doi.org/10.22358/jafs/142007/2021
  31. Karpukhin, M. Y., Keita, F. (2020). Biochemical composition of potato tubers of various varieties and the economic efficiency of its cultivation in the conditions of the Middle Urals. International Scientific and Practical Conference “Development of the Agro-lndustrial Complex in the Context of Robotization and Digitalization of Production in Russia and Abroad” (DAIC2020). https://doi.org/10.1051/e3sconf/202022203023
  32. O'Callaghan, T. F., Hennessy, D., McAuliffe, S., Kilcawley, K. N., O'Donovan, M., Dillon, P. et al. (2016). Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. Journal of Dairy Science, 99(12), 9424-9440. https://doi.org/10.3168/jds.2016-10985
  33. Morand-Fehr, P., Fedele, V., Decandia, M., Le Frileux, Y. (2007). Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Ruminant Research, 68(1-2), 20-34. https://doi.org/10.1016/j.small-rumres.2006.09.019
  34. Vorobyova, V., Skiba, M., Vasyliev, G. (2022). Extraction of phenolic compounds from tomato pomace using choline chloride-based deep eutectic solvents. Journal of Food Measurement and Characterization, 16(2), 1087-1104. https://doi.org/10.1007/s11694-021-01238-5
  35. Neela, S., Fanta, S. W. (2019). Review on nutritional composition of orange-fleshed sweet potato and its role in management of vitamin A deficiency. Food Science and Nutrition, 7(6), 1920-1945. https://doi.org/10.1002/fsn3.1063
  36. Thibodeau, M. S., Poore, M. H., Rogers, G. M. (2002). Health and production aspects of feeding sweetpotato to cattle. Veterinary Clinics of North America: Food Animal Practice, 18(2), 349-365. https://doi.org/10.1016/s0749-0720(02)00022-1
  37. Gawad, A.R.M.A., Hanafy M. A., Mahmoud A. E.M., Al-Slibi Y.H. (2020). Effect of tomato pomace, citrus and beet pulp on productive performance and milk quality of Egyptian Buffaloes. Pakistan Journal of Biological Sciences, 23(9), 1210-1219. https://doi.org/10.3923/pjbs.2020.1210.1219
  38. Khan, R. U., Khan, A., Muhammad, M. D., Naz, S. (2022). Tomato pomace waste as safe feed additive for poultry health and production-a review. Annals of Animal Science, 23(1), 39-51. https://doi.org/10.2478/aoas-2022-0026
  39. Calderón-Montaño, J., Burgos-Morón, E., Pérez-Guerrero, C., López-Lázaro, M. (2011). A review on the dietary flavonoid kaempferol. Mini-Reviews in Medicinal Chemistry, 11(4), 298-344. https://doi.org/10.2174/138955711795305335
  40. Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N. et al. (2022). Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism (s) of action. Frontiers in Pharmacology, 13, Article 806470. https://doi.org/10.3389/fphar.2022.806470

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 El-Maksoud A.A., Radwan M.A., Rahmy H.A., Elshaghabee F.M., Hamed A.M.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».