lexible sensors for food monitoring. Part II: Applications

Cover Page

Cite item

Full Text

Abstract

Monitoring and maintaining food quality, safety, and authenticity are the most important concerns in the food industry. The cutting-edge flexible sensors for food monitoring precisely satisfy the needs of acquiring information on multiple parameters in a small space, they provide for the more reasonable layout, get data on the mechanical deformations, and can be conformably attached to arbitrarily curved surfaces. The flexible sensing materials with a large area of specific surface, that ensure high mobility and density of the media, feature dense active sites, outstanding adjustability and high processing capacities, such as two-dimensional carbon nanomaterials, conductive polymers, and nano-hybrid materials; those materials have further improved the sensitivity, stability and selectivity of the flexible sensors’ perception. This article attempts to critically review the present state-of-arts developments in relation to the materials, manufacturing techniques and sensing mechanisms of the devices, as well as the applications of the electrically-transduced flexible sensors. Moreover, this article elaborates on the transduction mechanisms of the several typical transducers, with a focus on the physics behind, including the modulation of the doping level, Schottky barrier, and interfacial layer that typically cause changes in conductivity, functionality and permittivity. We also highlight the benefits and the technical challenges along with the appropriate solutions provided by the presented flexible sensors, and we also consider the potential strategies that allow overcoming limitations in power consumption, quantitatively assess the trade-offs in maintaining the quality and marketability, to optimize wireless communication and explore new sensing patterns.

About the authors

D. Luo

College of Engineering, China Agricultural University

Author for correspondence.
Email: dongjieluo@163.com
Dongjie Luo is affiliated with the College of Engineering at China Agricultural University.

M. A. Nikitina

V.M. Gorbatov Federal Research Center for Foods Systems

Email: dongjieluo@163.com

X. Xiao

College of Engineering, China Agricultural University

Email: dongjieluo@163.com

References

  1. Xiao, X., Mu, B., Cao, G. (2021). Light-energy-harvested flexible wireless temperature-sensing patch for food cold storage. Acs Applied Electronic Materials, 3(7), 3015–3022. https://doi.org/10.1021/acsaelm.1c00251
  2. Fu, B., Labuza, T.P. (1992). Considerations for the application of time-temperature integrators in food distribution. Journal of Food Distribution Research, 23(1), 9–18. http://doi.org/10.22004/ag.econ.27193
  3. Heard, B.R., Miller, Sh.A. (2018). Potential changes in greenhouse gas emissions from refrigerated supply chain introduction in a developing food system. Environmental Science and Technology, 53(1), 251–260. https://doi.org/10.1021/acs.est.8b05322
  4. Müssig, S., Granath, T., Schembri, T., Fidler, F., Haddad, D., Hille, r K.-H. et al. (2019). Anisotropic magnetic supraparticles with a magnetic particle spectroscopy fingerprint as indicators for cold-chain breach. ACS Applied Nano Materials, 2(8), 4698–4702. https://doi.org/10.1021/acsanm.9b00977
  5. Xiao, X., Li, Z., Matetic, M., Bakaric, M.B., Zhang, X. (2017). Energy-efficient sensing method for table grapes cold chain management. Journal of Cleaner Production, 152, 77–87. https://doi.org/10.1016/j.jclepro.2017.03.090
  6. Taoukis, P.S., Koutsoumanis, K., Nychas, G.J.E. (1999). Use of timetemperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. International Journal of Food Microbiology, 53(1), 21–31. https://doi.org/10.1016/s0168-1605(99)00142-7
  7. Russell, N.J. (2002). Bacterial membranes: The effects of chill storage and food processing. An overview. International Journal of Food Microbiology, 79(1–2), 27–34. https://doi.org/10.1016/s0168-1605(02)00176-9
  8. Escobedo, P., Bhattacharjee, M., Nikbakhtnasrabadi, F., Dahiya, R. (2021). Flexible strain and temperature sensing NFC tag for smart food packaging applications. IEEE Sensors Journal, 21(23), 26406–26414. https://doi.org/10.1109/JSEN.2021.3100876
  9. Nohria, R., Khillan, R.K., Su, Y., Dikshit, R., Lvov, Y., Varahramyan, K. (2006). Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sensors and Actuators B: Chemical, 114(1), 218–222. https://doi.org/10.1016/j.snb.2005.04.034
  10. Ayala-Zavala, J.F., Del-Toro-Sánchez, L., Alvarez-Parrilla, E., González-Aguilar, G.A. (2008). High relative humidity in-package of fresh-cut fruits and vegetables: Advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? Journal of Food Science, 73(4), R41-R47. https://doi.org/10.1111/j.1750-3841.2008.00705.x
  11. Yousefi, H., Su, H.M., Imani, S.M., Alkhaldi, K., Filipe, C. D. M., Didar, T. F. (2019). Intelligent food packaging: A review of smart sensing technologies for monitoring food quality. ACS Sensors, 4(4), 808–821. https://doi.org/10.1021/acssensors.9b00440
  12. McDaniel, C., Baker, R.C. (1977). Convenience food packaging and the perception of product quality. Journal of Marketing, 41(4), 57–58. https://doi.org/10.1177/002224297704100406
  13. Maddanimath, T., Mulla, I.S., Sainkar, S.R., Vijayamohanan, K., Shaikh, K.I., Patilet, A.S. et al. (2002). Humidity sensing properties of surface functionalised polyethylene and polypropylene films. Sensors and Actuators B: Chemical, 81(2– 3), 141–151. https://doi.org/10.1016/S0925-4005(01)00944-3
  14. Molina-Lopez, F., Briand, D., De Rooij, N.F. (2012). All additive inkjet printed humidity sensors on plastic substrate. Sensors and Actuators B: Chemical, 166–167, 212–222. https://doi.org/10.1016/j.snb.2012.02.042
  15. Sarig, Y. (2000). Potential applications of artificial olfactory sensing for quality evaluation of fresh produce. Journal of Agricultural Engineering Research, 77(3), 239–258.
  16. Kress-Rogers, E., Brimelow, Ch.J.B. (2001). Instrumentation and sensors for the food industry. Vol. 65. Woodhead Publishing. 2001.
  17. Ribeiro, P., Cardoso, S., Bernardino, A., Jamone, L. (October 24, 2020). Fruit quality control by surface analysis using a bio-inspired soft tactile sensor. Proceeding of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA. https://doi.org/10.1109/IROS45743.2020.9340955
  18. Xia, J., Wang, X., Zhang, J., Kong, C., Huang, W., Zhang, X. (2022). Flexible dualmechanism pressure sensor based on Ag nanowire electrodes for nondestructive grading and quality monitoring of fruits. ACS Applied Nano Materials, 5(8), 10652–10662. https://doi.org/10.1021/acsanm.2c01968.s001
  19. Kar, E., Bose, N., Dutta, B., Mukherjee, N., Mukherjee, S. (2019). Ultraviolet-and microwave-protecting, self-cleaning e-skin for efficient energy harvesting and tactile mechanosensing. ACS Applied Materials and Interfaces, 11(19), 17501– 17512. https://doi.org/10.1021/acsami.9b06452
  20. Nychas, G.-J.E., Skandamis, P.N., Tassou, Ch.C., Koutsoumanis, K.P. (2008). Meat spoilage during distribution. Meat Science, 78(1–2), 77–89. https://doi.org/10.1016/j.meatsci.2007.06.020
  21. Yoshida, C.M.P., Maciel, V.B.V., Mendonça, M.E.D., Franco, T.T. (2014). Chitosan biobased and intelligent films: Monitoring pH variations. LWT-Food Science and Technology, 55(1), 83–89. https://doi.org/10.1016/j.lwt.2013.09.015
  22. Weston, M., Geng, S., Chandrawati, R. (2021). Food sensors: Challenges and opportunities. Advanced Materials Technologies, 6(5), Article 2001242. https://doi.org/10.1002/admt.202001242
  23. Huang, W.D., Deb, S., Seo, Y.S., Rao, S., Chiao, M., Chiao, J. C. (2011). A passive radio-frequency pH-sensing tag for wireless food-quality monitoring. IEEE Sensors Journal, 12(3), 487–495. https://doi.org/10.1109/JSEN.2011.2107738
  24. Xiao, X., Mu, B., Cao, G., Yang, Y., Wang, M. (2022). Flexible battery-free wireless electronic system for food monitoring. Journal of Science: Advanced Materials and Devices, 7(2), Article 100430. https://doi.org/10.1016/j.jsamd.2022.100430
  25. Chen, Z., Cotterell, B., Wang, W., Guenther, E., Chua, S.-J. (2001). A mechanical assessment of flexible optoelectronic devices. Thin Solid Films, 394(1–2), 201– 205. https://doi.org/10.1016/S0040-6090(01)01138-5
  26. Peng, C., Jia, Z., Bianculli, D., Li, T., Lou, J. (2011). In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates. Journal of Applied Physics, 109(10), Article 103530. https://doi.org/10.1063/1.3592341
  27. Park, S.K., Jeong, I.H., Dae, G.M., Won, K.K. (2003). Mechanical stability of externally deformed indium–tin–oxide films on polymer substrates. Japanese Journal of Applied Physics, 42(2R), Article 623. https://doi.org/10.1143/JJAP.42.623
  28. Yu, H.K., Dong, W.J., Jung, G.H., Lee, J.-L. (2011). Three-dimensional nanobranched indium-tin-oxide anode for organic solar cells. ACS Nano, 5(10), 8026– 8032. https://doi.org/10.1021/nn2025836
  29. Hu, J., Stein, A., Bühlmann, P. (2016). Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends in Analytical Chemistry, 76, 102–114. https://doi.org/10.1016/j.trac.2015.11.004
  30. Harris, D.C. (2010). Quantitative Chemical Analysis. W. H. Freeman and Company, New York. 2010.
  31. Meng, Z., Stolz, R.M., Mendecki, L., Mirica, K.A. (2019). Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chemical Reviews, 119(1), 478–598. https://doi.org/10.1021/acs.chemrev.8b00311
  32. Kim, G.T., Paik, H.D., Lee, D.S. (2003). Effect of different oxygen permeability packaging films on the quality of sous-vide processed seasoned spinach soup. Food Science and Biotechnology, 12(3), 312–315.
  33. Mills, A. (2005). Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews, 34(12), 1003–1011. https://doi.org/10.1039/b503997p
  34. Won, S., Won, K. (2021). Self-powered flexible oxygen sensors for intelligent food packaging. Food Packaging and Shelf Life, 29, Article 100713. https://doi.org/10.1016/j.fpsl.2021.100713
  35. King, A.D., Nagel, C.W. (1967). Growth inhibition of a Pseudomonas by carbon dioxide. Journal of Food Science, 32(5), 575–579. https://doi.org/10.1111/j.1365-2621.1967.tb00836.x
  36. Ammor, S., Tauveron, G., Dufour, E., Chevallier, I. (2006). Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility: 1Screening and characterization of the antibacterial compounds. Food Control, 17(6), 454–461. https://doi.org/10.1016/j.foodcont.2005.02.006
  37. Sivertsvik, M., Rosnes, J.T., Bergslien, H. (2002). Modified atmosphere packaging. Minimal Processing Technologies in The Food Industry. Chapter in a book: Minimal Processing Technologies in the Food Industries. Woodhead Publishing Ltd. United Kingdom. 2002. https://doi.org/10.1533/9781855736795.61
  38. Coyne, F.P. (1933). The effect of carbon dioxide on bacteria growth. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 113(782), 196–217. https://doi.org/10.1098/rspb.1933.0041
  39. Shahrbabaki, Z., Farajikhah, S., Ghasemian, M.B., Oveissi, F., Rath, R.J., Yun, J. et al. (2023). A Flexible and Polymer-Based Chemiresistive CO2 Gas Sensor at Room Temperature. Advanced Materials Technologies, 8(10), Article 2201510. https://doi.org/10.1002/admt.202201510
  40. Cunningham, M.F., Jessop, P.G. (2016). An introduction to the principles and fundamentals of CO2-switchable polymers and polymer colloids. European Polymer Journal, 76, 208–215. https://doi.org/10.1016/j.eurpolymj.2016.01.036
  41. Liu, S., Armes, S.P. (2003). Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer. Langmuir, 19(10), 4432–4438. https://doi.org/10.1021/la020951l
  42. Shahrbabaki, Z., Oveissi, F., Farajikhah, S., Ghasemian, M.B., Jansen-van Vuuren, R.D., Jessopet, P.G. et al. (2022). Electrical Response of Poly (N-[3(dimethylamino) Propyl] Methacrylamide) to CO2 at a Long Exposure Period. ACS Omega, 7(26), 22232–22243. https://doi.org/10.1021/acsomega.2c00914
  43. Alshamrani, A.K., Vanderveen, J.R., Jessop, P.G. (2016). A guide to the selection of switchable functional groups for CO2-switchable compounds. Physical Chemistry Chemical Physics, 18(28), 19276–19288. https://doi.org/10.1039/c6cp03302d
  44. Liu, H., Lin, S., Feng, Y., Theato, P. (2017). CO2-responsive polymer materials. Polymer Chemistry, 8(1), 12–23. https://doi.org/10.1039/C6PY01101B
  45. Liu, H., Zhao, Y., Dreiss, C.A., Feng, Y. (2014). CO2-switchable multi-compartment micelles with segregated corona. Soft Matter, 10(34), 6387–6391. https://doi.org/10.1039/c4sm01207k
  46. Yan, Q., Zhao, Y. (2013). CO2-stimulated diversiform deformations of polymer assemblies. Journal of the American Chemical Society, 135(44), 16300–16303. https://doi.org/10.1021/ja408655n
  47. Cunningham, M.F., Jessop, P.G. (2019). Carbon dioxide-switchable polymers: Where are the future opportunities? Macromolecules, 52(18), 6801–6816. https://doi.org/10.1021/acs.macromol.9b00914
  48. Cai, C., Mo, J., Lu, Y., Zhang, N., Wu, Z., Wang, S. et al. (2021). Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy, 83, Article 105833. https://doi.org/10.1016/j.nanoen.2021.105833
  49. Silva, N.F.D., Almeida, C.M.R., Magalhães, J.M.C.S., Gonçalves, M.P., Freire, C., Delerue-Matos, C. (2019). Development of a disposable paper-based potentiometric immunosensor for real-time detection of a foodborne pathogen. Biosensors and Bioelectronics, 141, Article 111317. https://doi.org/10.1016/j.bios.2019.111317
  50. Ma, Z., Chen, P., Cheng, W., Yan, K., Pan, L., Shiet, Y. et al. (2018). Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Letters, 18(7), 4570–4575. https://doi.org/10.1021/acs.nanolett.8b01825
  51. Matindoust, S., Farzi, A., Baghaei, N.M., Shahrokh Abadi, M.H., Zou, Z., Zheng, L.-R. (2017). Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods. Journal of Materials Science: Materials in Electronics, 28, 7760–7768. https://doi.org/10.1007/s10854-017-6471-z
  52. Matindoust, S., Baghaei-Nejad, M., Shahrokh Abadi, M.H., Zou, Z., Zheng, L.-R. (2016). Food quality and safety monitoring using gas sensor array in intelligent packaging. Sensor Review, 36(2), 169–183. https://doi.org/10.1108/SR-07-2015-0115
  53. Tang, N., Zhou, C., Xu, L., Jiang, Y., Qu, H., Duan, X. (2019). A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sensors, 4(3), 726–732. https://doi.org/10.1021/acssensors.8b01690
  54. Blackwood, D., Josowicz, M. (1991). Work function and spectroscopic studies of interactions between conducting polymers and organic vapors. The Journal of Physical Chemistry, 95(1), 493–502. https://doi.org/10.1021/j100154a086
  55. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K., Poh, H.L. (2010). Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29(9), 954–965. https://doi.org/10.1016/j.trac.2010.05.011
  56. Javey, A., Kong, J. (2009). Carbon nanotube electronics. Springer Science and Business Media, LLC. New York, NY, United States. 2009.
  57. Yan, H., Zhao, G., Lu, W., Hu, C., Wang, X., Liu, G. et al. (2023). A flexible and wearable paper-based chemiresistive sensor modified with SWCNTs-PdNPspolystyrene microspheres composite for the sensitive detection of ethylene gas: A new method for the determination of fruit ripeness and corruption. Analytica Chimica Acta, 1239, Article 340724. https://doi.org/10.1016/j.aca.2022.340724
  58. Lelièvre, J.-M., Latchè, A., Jones, B., Bouzayen, M., Pech, J.-C. (1997). Ethylene and fruit ripening. Physiologia Plantarum, 101(4), 727–739. https://doi.org/10.1111/j.1399-3054.1997.tb01057.x
  59. Saraiva, L.A., Castelan, F.P., Gomes, B.L., Purgatto, E., Cordenunsi-Lysenko, B.R. (2018). Thap Maeo bananas: Fast ripening and full ethylene perception at low doses. Food Research International, 105, 384–392. https://doi.org/10.1016/j.foodres.2017.11.007
  60. Cristescu, S.M., Mandon, J., Arslanov, D., De Pessemier, J., Hermans, C., Harren, F.J.M. (2013). Current methods for detecting ethylene in plants. Annals of Botany, 111(3), 347–360. https://doi.org/10.1093/aob/mcs259
  61. Amalric-Popescu, D., Bozon-Verduraz, F. (2001). Infrared studies on SnO2 and Pd/SnO2. Catalysis Today, 70(1–3), 139–154. https://doi.org/10.1016/S09205861(01)00414-X
  62. Kovtunov, K.V., Beck, I.E., Zhivonitko, V.V., Barskiy, D.A., Bukhtiyarov, V.I., Koptyug, I.V. (2012). Heterogeneous addition of H2 to double and triple bonds over supported Pd catalysts: A parahydrogen-induced polarization technique study. Physical Chemistry Chemical Physics, 14(31), 11008–11014. https://doi.org/10.1039/c2cp40690j
  63. Fei, H., Wu, G., Cheng, W.Y., Yan, W., Xu, H., Zhang, D. et al. (2019). Enhanced NO2 sensing at room temperature with graphene via monodisperse polystyrene bead decoration. ACS Omega, 4(2), 3812–3819. https://doi.org/10.1021/acsomega.8b03540
  64. Esser, B., Schnorr, J.M., Swager, T.M. (2012). Selective detection of ethylene gas using carbon nanotube-based devices: Utility in determination of fruit ripeness. Angewandte Chemie International Edition, 51(23), 5752–5756. https://doi.org/10.1002/anie.201201042
  65. Liu, P., Sun, Q., Zhu, F., Liu, K., Jiang, K., Liu, L. et al. (2008). Measuring the work function of carbon nanotubes with thermionic method. Nano Letters, 8(2), 647–651. https://doi.org/10.1021/nl0730817
  66. Yu, T., Cheng, X.L., Zhang, X., Sui L., Xu, Y., Gao, S. et al. (2015). Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays. Journal of Materials Chemistry A, 3(22), 11991–11999. https://doi.org/10.1039/C5TA00811E
  67. Zhao, Q., Duan, Z., Yuan, Z., Li, X., Wang, S., Liuet, B. et al. (2020). High performance ethylene sensor based on palladium-loaded tin oxide: Application in fruit quality detection. Chinese Chemical Letters, 31(8), 2045–2049. https://doi.org/10.1016/j.cclet.2020.04.032
  68. Wang, S., Xiao, B., Yang, T., Wang, P., Xiao, C., Li, Z. et al. (2014). Enhanced HCHO gas sensing properties by Ag-loaded sunflower-like In2O3 hierarchical nanostructures. Journal of Materials Chemistry A, 2(18), 6598–6604. https://doi.org/10.1039/C3TA15110G
  69. Li, B., Li, M., Meng, F., Liu, J. (2019). Highly sensitive ethylene sensors using Pd nanoparticles and rGO modified flower-like hierarchical porous α-Fe2O3. Sensors and Actuators B: Chemical, 290, 396–405. https://doi.org/10.1016/j.snb.2019.04.002
  70. Bartolucci, C., Antonacci, A., Arduini, F., Moscone, D., Fraceto, L., Camposet, E. et al. (2020). Green nanomaterials fostering agrifood sustainability. TrAC Trends in Analytical Chemistry, 125, Article 115840. https://doi.org/10.1016/j.trac.2020.115840
  71. Karimian, N., Fakhri, H., Amidi, S., Hajian, A., Arduinie, F., Bagheri, H. (2019). A novel sensing layer based on metal-organic framework UiO-66 modified with TiO2-graphene oxide: Application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. New Journal of Chemistry, 43(6), 2600–2609. https://doi.org/10.1039/C8NJ06208K
  72. Aulakh, J.S., Malik, A.K., Kaur, V., Schmitt-Kopplin, P. (2005). A Review on solid phase micro extraction-high performance liquid chromatography (SPME-HPLC) analysis of pesticides. Critical Reviews in Analytical Chemistry, 35(1), 71–85. https://doi.org/10.1080/10408340590947952
  73. Di Tuoro, D., Portaccio, M., Lepore, M., Arduini, F., Moscone, D., Bencivengaet, U. al. (2011). An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. New Biotechnology, 29(1), 132–138. https://doi.org/10.1016/j.nbt.2011.04.011
  74. Dias, E., de Costa, F.G., Morais, S., de Lourdes Pereira, M. (2015). A review on the assessment of the potential adverse health impacts of carbamate pesticides. Chapter in a book: Topics in Public Health. IntechOpen Limited, London, United Kingdom. 2015. https://doi.org/10.5772/59613
  75. Dömötörová, M., Matisová, E. (2008). Fast gas chromatography for pesticide residues analysis. Journal of Chromatography A, 1207(1–2), 1–16. https://doi.org/10.1016/j.chroma.2008.08.063
  76. Romanholo, P.V.V., Razzino, C.A., Raymundo-Pereira, P.A., Prado, T.M., Machado, S.A.S., Sgobbi, L.F. (2021). Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosensors and Bioelectronics, 185, Article 113242. https://doi.org/10.1016/j.bios.2021.113242
  77. Paschoalin, R.T., Gomes, N.O., Almeida, G.F., Bilatto, S., Farinas, C.S., Machadoet, S.A.S. et al. (2022). Wearable sensors made with solution-blow spinning poly (lactic acid) for non-enzymatic pesticide detection in agriculture and food safety. Biosensors and Bioelectronics, 199, Article 113875. https://doi.org/10.1016/j.bios.2021.113875
  78. Zhu, X., Lin, L., Wu, R., Zhu, Y., Sheng, Y., Nie, P. et al. (2021). Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosensors and Bioelectronics, 179, Article 113062. https://doi.org/10.1016/j.bios.2021.113062
  79. Zheng, W., Zhang, P., Chen, J., Tian, W. B., Zhang, Y. M., Sun, Z. M. (2018). In situ synthesis of CNTs@ Ti3C2 hybrid structures by microwave irradiation for highperformance anodes in lithium ion batteries. Journal of Materials Chemistry A, 6(8), 3543–3551. https://doi.org/10.1039/C7TA10394H
  80. Guo, X., Zhang, W., Zhang, J., Zhou, D., Tang, X., Xuet, X. et al. (2020). Boosting sodium storage in two-dimensional phosphorene/Ti3C2Tx MXene nanoarchitectures with stable fluorinated interphase. ACS Nano, 14(3), 3651–3659. https://doi.org/10.1021/acsnano.0c00177
  81. Bard, A.J., Faulkner, L.R., White, H.S. (2022). Electrochemical methods: Fundamentals and applications. John Wiley and Sons. New York, Chichester, Weinheim, Brisbane, Singapore, Toronto. 2022.
  82. Dmitrienko, S.G., Kochuk, E.V., Apyari, V.V., Tolmacheva, V.V., Zolotov, Y.A. (2014). Recent advances in sample preparation techniques and methods of sulfonamides detection — A review. Analytica Chimica Acta, 850, 6–25. https://doi.org/10.1016/j.aca.2014.08.023
  83. Baran, W., Adamek, E., Ziemiańska, J., Sobczak, A. (2011). Effects of the presence of sulfonamides in the environment and their influence on human health. Journal of Hazardous Materials, 196, 1–15. https://doi.org/10.1016/j.jhazmat.2011.08.082
  84. García-Galán, M.J., Díaz-Cruz, M.S., Barceló, D. (2009). Combining chemical analysis and ecotoxicity to determine environmental exposure and to assess risk from sulfonamides. Trac Trends in Analytical Chemistry, 28(6), 804–819. https://doi.org/10.1016/j.trac.2009.04.006
  85. Valderas, M.W., Andi, B., Barrow, W.W., Cook, P.F. (2008). Examination of intrinsic sulfonamide resistance in Bacillus anthracis: A novel assay for dihydropteroate synthase. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(5), 848–853. https://doi.org/10.1016/j.bbagen.2008.02.003
  86. Fekadu, S., Alemayehu, E., Dewil, R., Van der Bruggen, B. (2019). Pharmaceuticals in freshwater aquatic environments: A comparison of the African and European challenge. Science of the Total Environment, 654, 324–337. https://doi.org/10.1016/j.scitotenv.2018.11.072
  87. Liu, L., Wan, Q., Xu, X., Duan, S., Yang, C. (2017). Combination of micelle collapse and field-amplified sample stacking in capillary electrophoresis for determination of trimethoprim and sulfamethoxazole in animal-originated foodstuffs. Food Chemistry, 219, 7–12. https://doi.org/10.1016/j.foodchem.2016.09.118
  88. Xue, W., Li, F., Zhou, Q. (2019). Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell. Bioresource Technology, 289, Article 121632. https://doi.org/10.1016/j.biortech.2019.121632
  89. Ou, Y., Yao, L., Li, Y., Bai, C., Luque, R., Peng, G. (2020). Magnetically separable Fe-MIL-88B_NH2 carbonaceous nanocomposites for efficient removal of sulfamethoxazole from aqueous solutions. Journal of Colloid and Interface Science, 570, 163–172. https://doi.org/10.1016/j.jcis.2020.02.116
  90. Fatta-Kassinos, D., Meric, S., Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399, 251–275. https://doi.org/10.1007/s00216-010-4300-9
  91. Zeng, Y., Li, Q., Wang, W., Wen, Y., Ji, K., Liu, X. et al. (2022). The fabrication of a flexible and portable sensor based on home-made laser-induced porous graphene electrode for the rapid detection of sulfonamides. Microchemical Journal, 182, Article 107898. https://doi.org/10.1016/j.microc.2022.107898
  92. Nayak, P., Kurra, N., Xia, C., Alshareef, H.N. (2016). Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Advanced Electronic Materials, 2(10), Article 1600185. https://doi.org/10.1002/aelm.201600185
  93. Bakker, E., Telting-Diaz, M. (2002). Electrochemical sensors. Analytical Chemistry, 74(12), 2781–2800. https://doi.org/10.1021/ac0202278
  94. FDA, U.S. (2013). Guidance for industry. Bioanalytical method validation. Retrieved from https://ag-lab.org/sites/default/files/pdf/media/1/Bioanalytical%20method%20validation%20for%20industry.pdf Accessed August 15, 2023
  95. Abadias, M., Usall, J., Anguera, M., Solsona, C., Viñas, I. (2008). Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. International Journal of Food Microbiology, 123(1–2), 121–129. https://doi.org/10.1016/j.ijfoodmicro.2007.12.013
  96. Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.-A., Royet, S.L. et al. (2011). Foodborne illness acquired in the United States-major pathogens. Emerging Infectious Diseases, 17(1), 7–15. https://doi.org/10.3201/eid1701.p11101
  97. Law, J.W.F., Ab Mutalib, N.S., Chan, K.G., Lee, L.-H. (2015). Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 5, Article 770. https://doi.org/10.3389/fmicb.2014.00770
  98. Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., Adley, C. (2010). An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advances, 28(2), 232–254. https://doi.org/10.1016/j.biotechadv.2009.12.004
  99. Silva, N.F.D., Magalhães, J.M.C.S., Barroso, M.F., Oliva-Teles, T., Freire, C., Delerue-Matos, C. (2019). In situ formation of gold nanoparticles in polymer inclusion membrane: Application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection. Talanta, 194, 134–142. https://doi.org/10.1016/j.talanta.2018.10.024
  100. Soares, R.R.A., Hjort, R.G., Pola, C.C., Parate, K., Reis, E.L., Soares, N.F.F. et al. (2020). Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sensors, 5(7), 1900–1911. https://doi.org/10.1021/acssensors.9b02345
  101. Garland, N.T., McLamore, E.S., Cavallaro, N.D., Mendivelso-Perez, D., Smith, E.A., Jing, D. et al. (2018). Flexible laser-induced graphene for nitrogen sensing in soil. ACS Applied Materials and Interfaces, 10(45), 39124–39133. https://doi.org/10.1021/acsami.8b10991
  102. Dos Santos, M.B., Azevedo, S., Agusil, J.P., Prieto-Simón, B., Sporer, C., Torrents, E. et al. (2015). Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochemistry, 101, 146–152. https://doi.org/10.1016/j.bioelechem.2014.09.002
  103. Mutreja, R., Jariyal, M., Pathania, P., Sharma, A., Sahoo, D.K., Suriet, C.R. (2016). Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples. Biosensors and Bioelectronics, 85, 707–713. https://doi.org/10.1016/j.bios.2016.05.079
  104. Ding, S., Mosher, С., Lee, X.Y., Das, S.R., Cargill, A.A., Tang, X. et al. (2017). Rapid and label-free detection of interferon gamma via an electrochemical aptasensor comprising a ternary surface monolayer on a gold interdigitated electrode array. ACS Sensors, 2(2), 210–217. https://doi.org/10.1021/acssensors.6b00581
  105. Ruecha, N., Shin, K., Chailapakul, O., Rodthongkum, N. (2019). Label-free paper-based electrochemical impedance immunosensor for human interferon gamma detection. Sensors and Actuators B: Chemical, 279, 298–304. https://doi.org/10.1016/j.snb.2018.10.024
  106. Marrs, T.C. (2012). Mammalian toxicology of insecticides. Royal Society of Chemistry. United Kingdom. 2012. https://doi.org/10.1039/9781849733007
  107. Sharma, D., Nagpal, A., Pakade, Y.B., Katnoria, J.K. (2010). Analytical methods for estimation of organophosphorus pesticide residues in fruits and vegetables: A review. Talanta, 82(4), 1077–1089. https://doi.org/10.1016/j.talanta.2010.06.043
  108. Kingery, A.F., Allen, H.E. (1995). The environmental fate of organophosphorus nerve agents: A review. Toxicological and Environmental Chemistry, 47(3–4), 155–184. https://doi.org/10.1080/02772249509358137
  109. Bajgar, J. (2004). Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Advances in Clinical Chemistry, 38(1), 151–216. https://doi.org/10.1016/s0065-2423(04)38006-6
  110. Noort, D., Benschop, H.P., Black, R.M. (2002). Biomonitoring of exposure to chemical warfare agents: A review. Toxicology and Applied Pharmacology, 184(2), 116–126. https://doi.org/10.1006/taap.2002.9449
  111. Zhang, W., Asiri, A.M., Liu, D., Du, D., Lin, Y. (2014). Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends in Analytical Chemistry, 54, 1–10. https://doi.org/10.1016/j.trac.2013.10.007
  112. Wang, J., Krause, R., Block, K., Musameh, M., Mulchandani, A., Schöning, M.J. (2003). Flow injection amperometric detection of OP nerve agents based on an organophosphorus–hydrolase biosensor detector. Biosensors and Bioelectronics, 18(2–3), 255–260. https://doi.org/10.1016/s0956-5663(02)00178-1
  113. Mishra, R.K., Hubble, L.J., Martín, A., Kumar, R., Barfidokht, A., Kim, J. et al. (2017). Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sensors, 2(4), 553–561. https://doi.org/10.1021/acssensors.7b00051
  114. Chen, A., Shah, B. (2013). Electrochemical sensing and biosensing based on square wave voltammetry. Analytical Methods, 5(9), 2158–2173. https://doi.org/10.1039/C3AY40155C
  115. Gupta, V.K., Jain, R., Radhapyari, K., Jadon, N., Agarwal, S. (2011). Voltammetric techniques for the assay of pharmaceuticals — A review. Analytical Biochemistry, 408(2), 179–196. https://doi.org/10.1016/j.ab.2010.09.027
  116. Laborda, E., Molina, A., Martínez-Ortiz, F., Compton, R.G. (2012). Electrode modification using porous layers. Maximising the analytical response by choosing the most suitable voltammetry: Differential Pulse vs Square Wave vs Linear sweep voltammetry. Electrochimica Acta, 73, 3–9. https://doi.org/10.1016/j.electacta.2011.07.107
  117. Uslu, B., Ozkan, S.A. (2011). Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Analytical Letters, 44(16), 2644–2702. https://doi.org/10.1080/00032719.2011.553010
  118. Fallatah, A., Kuperus, N., Almomtan, M., Padalkar, S. (2022). Sensitive biosensor based on shape-controlled ZnO Nanostructures grown on flexible porous substrate for pesticide detection. Sensors, 22(9), Article 3522. https://doi.org/10.3390/s22093522
  119. Vanegas, D.C., Patiño, L., Mendez, C., Oliveira, D.A.d., Torres, A.M., Gomes, C.L. et al. (2018). Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors, 8(2), Article 42. https://doi.org/10.3390/bios8020042
  120. Taylor, S.L., Eitenmiller, R.R. (1986). Histamine food poisoning: Toxicology and clinical aspects. CRC Critical Reviews in Toxicology, 17(2), 91–128. https://doi.org/10.3109/10408448609023767
  121. Bülbül, G., Hayat, A., Andreescu, S. (2015). Portable nanoparticle-based sensors for food safety assessment. Sensors, 15(12), 30736–30758. https://doi.org/10.3390/s151229826
  122. Hanak, E., Boutrif, E., Fabre, P., Pineiro, M. (December 11–13, 2000). Food safety management in developing countries. Proceedings of the international workshop, CIRAD-FAO, Montpellier, France.
  123. Bóka, B., Adányi, N., Virág, D., Sebela, M., Kiss, A. (2012). Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis, 24(1), 181–186. https://doi.org/10.1002/elan.201100419
  124. Hu, L., Chee, P.L., Sugiarto, S., Yu, Y., Shi, Ch., Yan, R. et al. (2022). Hydrogel-based flexible electronics. Advanced Materials, 35(14), Article 2205326. https://doi.org/10.1002/adma.202205326
  125. Guo, J., Yu, Y., Cai, L., Wang, Y., Shi, K., Shang, L. et al. (2021). Microfluidics for flexible electronics. Materials Today, 44, 105–135. https://doi.org/10.1016/j.attod.2020.08.017
  126. Bao, Z., Chen, X. (2016). Flexible and Stretchable Devices. Advanced Materials, 28(22), 4177–4179. https://doi.org/10.1002/adma.201601422
  127. Crabb, R.L., Treble, F.C. (1967). Thin silicon solar cells for large flexible arrays. Nature, 213, 1223–1224. https://doi.org/10.1038/2131223a0
  128. Sun, X., Qin, Z., Ye, L., Zhang, H., Yu, Q., Wu, X. et al. (2020). Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chemical Engineering Journal, 382, Article 122832. https://doi.org/10.1016/j.cej.2019.122832
  129. Qin, Z., Sun, X., Yu, Q., Zhang, H., Wu, X., Yao, M. et al. (2020). Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Applied Materials and Interfaces, 12(4), 4944–4953. https://doi.org/10.1021/acsami.9b21659
  130. Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wu, D. et al. (2012). Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2(1), Article 870. https://doi.org/10.1038/srep00870
  131. Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y. et al. (2014). Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Advanced Materials, 26(13), 2022–2027. https://doi.org/10.1002/adma.201304742
  132. Tabish, M., Malik, M.U., Khan, M.A., Yasin, G., Asif, H.M., Anjum, M.J. et al. (2021). Construction of NiCo/graphene nanocomposite coating with bulgeslike morphology for enhanced mechanical properties and corrosion resistance performance. Journal of Alloys and Compounds, 867, Article 159138. https://doi.org/10.1016/j.jallcom.2021.159138
  133. Nadeem, M., Yasin, G., Arif, M., Tabassum, H., Bhatti, M.H., Mehmood, M. et al. (2021). Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chemical Engineering Journal, 409, Article 128205. https://doi.org/10.1016/j.cej.2020.128205
  134. Yasin, G., Arif, M., Mehtab, T., Shakeel, M., Mushtaq, M.A., Kumar, A. et al. (2020). A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorganic Chemistry Frontiers, 7(2), 402–410. https://doi.org/10.1039/C9QI01105F
  135. Ibraheem, S., Chen, S., Peng, L., Li, J., Li, L., Liao, Q. et al. (2020). Strongly coupled iron selenides-nitrogen-bond as an electronic transport bridge for enhanced synergistic oxygen electrocatalysis in rechargeable zinc-O2 batteries. Applied Catalysis B: Environmental, 265, Article 118569. https://doi.org/10.1016/j.apcatb.2019.118569
  136. Nadeem, M., Yasin, G., Arif, M, Bhatti, M.H, Sayin, K., Mehmood, M. et al. (2020). Pt-Ni@PC900 hybrid derived from layered-structure Cd-MOF for fuel cell ORR activity. ACS Omega, 5(5), 2123–2132. https://doi.org/10.1021/acsomega.9b02741
  137. Hangarter, C.M., Chartuprayoon, N., Hernández, S.C., Choa, Y., Myung, N.V. (2013). Hybridized conducting polymer chemiresistive nano-sensors. Nanotoday, 8(1), 39–55. https://doi.org/10.1016/j.nantod.2012.12.005
  138. Miller, D.R., Akbar, S.A., Morris, P.A. (2014). Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensors and Actuators B: Chemical, 204, 250–272. https://doi.org/10.1016/j.snb.2014.07.074
  139. Giaretta, J.E., Duan, H., Farajikhah, S., Oveissi, F., Dehghani, F., Naficy, S. (2022). A highly flexible, physically stable, and selective hydrogel-based hydrogen peroxide sensor. Sensors and Actuators B: Chemical, 371, Article 132483. https://doi.org/10.1016/j.snb.2022.132483
  140. Escobedo, P., Bhattacharjee, M., Nikbakhtnasrabadi, F., Dahiya, R. (2021). Flexible strain and temperature sensing NFC tag for smart food packaging applications. IEEE Sensors Journal, 21(23), 26406–26414. https://doi.org/10.1109/JSEN.2021.3100876
  141. Shrivastava, C., Berry, T., Cronje, P., Schudel, S., Defraeye, T. (2022). Digital twins enable the quantification of the trade-offs in maintaining citrus quality and marketability in the refrigerated supply chain. Nature Food, 3(6), 413–427. https://doi.org/10.1038/s43016-022-00497-9
  142. Zhou, Y., Wan, C., Yang, Y., Yang, H., Wang, S., Dai, Z. et al. (2018). Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Advanced Functional Materials, 29(1), Article 1806220. https://doi.org/10.1002/adfm.201806220
  143. Gupta, S., Navaraj, W.T., Lorenzelli, L., Dahiya, R. (2018). Ultra-thin chips for high-performance flexible electronics. npj Flexible Electronics, 2(1), Article 8. https://doi.org/10.1038/s41528-018-0021-5
  144. Harendt, C., Kostelnik, J., Kugler, A., Lorenz, E., Saller, S., Schreivogel, A. et al. (2015). Hybrid Systems in Foil (HySiF) exploiting ultra-thin flexible chips. Solid-State Electronics, 113, 101–108. https://doi.org/10.1016/j.sse.2015.05.023
  145. Biggs, J., Myers, J., Kufel, J., Ozer, E., Craske, S., Sou, A. et al. (2021). A natively flexible 32-bit Arm microprocessor. Nature, 595(7868), 532–536. https://doi.org/10.1038/s41586-021-3625-w

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Luo D., Nikitina M.A., Xiao X.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».