Аспекты питательных свойств и перспективы применения семян конопли ( Cannabis Sativa L.) в производстве продуктов питания
- Авторы: Капканарь Т.Н.1, Ковалёв Е.Ф.1, Негоица К.Ю.1
-
Учреждения:
- Технический университет Молдовы
- Выпуск: Том 7, № 1 (2024)
- Страницы: 52-58
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2618-9771/article/view/311335
- DOI: https://doi.org/10.21323/2618-9771-2024-7-1-52-58
- ID: 311335
Цитировать
Полный текст
Аннотация
Работа посвящена анализу питательных свойств семян конопли ( Cannabis sativa L.) и перспектив ее применения в производстве продуктов питания, так как эти семена могут стать ценным источником многофункциональных компонентов для производства функциональных продуктов питания. Cannabis sativa L. — многоцелевая культура с низким уровнем воздействия на окружающую среду, традиционно выращиваемая в западных культурах для производства волокна. Распространение синтетических волокон и производство влияющих на сознание препаратов из некоторых наркосодержащих видов привело к запрету выращивания конопли. Таким образом, выращивание сортов конопли, широко известных как «техническая конопля», практикуется лишь в течение последних двух десятилетий. Коноплю ( Cannabis sativa L.) выращивают не только из-за ее экономического значения, но и из-за пищевой ценности семян. Семена конопли состоят на 25–35% из липидов с идеально сбалансированными жирными кислотами (ЖК); на 20–25% из белков, которые легко усваиваются и содержат все незаменимые аминокислоты; на 20–30% из углеводов с высокой долей пищевых волокон, также из витаминов и минералов. Помимо своей питательной ценности, семена конопли также богаты антиоксидантами и биологически активными соединениями, такими как биоактивные пептиды, высокоактивные полифенолы, борющиеся со свободными радикалами, а также каннабиоиды. Таким образом, в этом исследовании рассматриваются научные данные о семенах конопли Cannabis sativa L. перспективных аспектах ее выращивания, функциональном и терапевтическом потенциале, а также данные о ее применении при производстве функциональных продуктов питания.
Ключевые слова
Об авторах
Т. Н. Капканарь
Технический университет Молдовы
Автор, ответственный за переписку.
Email: catalina.cerchez@toap.utm.md
PhD, доцент, кафедра продовольствия и питания, Технический университет МолдовыКишинев, бульвар Штефан чел Маре, 168, MD-2004Тел.: +3–736–991–77–74
Е. Ф. Ковалёв
Технический университет Молдовы
Email: catalina.cerchez@toap.utm.md
PhD, доцент, кафедра продовольствия и питания, Технический университет МолдовыРеспублика Молдова, Кишинев, бульвар Штефан чел Маре, 168, MD-2004Тел.: +3–736–997–52–77
К. Ю. Негоица
Технический университет Молдовы
Email: catalina.cerchez@toap.utm.md
аспирант кафедры продовольствия и питания, Технический университет МолдовыРеспублика Молдова, Кишинев, бульвар Штефан чел Маре, 168, MD-2004Тел.: +3–737–895–00–05
Список литературы
- Farinon, B., Molinari, R., Costantini, L., Merendino, N. (2020). The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients, 12(7), Article 1935. https://doi.org/10.3390/nu12071935
- Landucci, E., Mazzantini, C., Lana, D., Davolio, P. L., Giovannini, M. G., Pellegrini-Giampietro, D. E. (2021). Neuroprotective effects of cannabidiol but not δ9-tetrahydrocannabinol in rat hippocampal slices exposed to oxygen-glucose deprivation: Studies with cannabis extracts and selected cannabinoids. International Journal of Molecular Sciences, 22(18), Article 9773. https://doi.org/10.3390/ijms22189773
- Stasiłowicz-Krzemień, A., Sip, S., Szulc, P., Cielecka-Piontek, J. (2023). Determining antioxidant activity of cannabis leaves extracts from different varieties — unveiling nature’s treasure trove. Antioxidants, 12(7), Article 1390. https://doi.org/10.3390/antiox12071390
- Golia, E. E., Bethanis, J., Ntinopoulos, N., Kaffe, G.-G., Komnou, A. A., Vasilou, C. (2023). Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustainable Chemistry and Pharmacy, 31, Article 100961. https://doi.org/10.1016/j.scp.2022.100961
- Negoița, C., Capcanari, T., Chirsanova, A., Covaliov, E., Siminiuc, R. (June 3, 2022). The agro-industrial potential of Cannabis Sativa L. cultivation in the Republic of Moldova. International Scientific Conference «Perspectives and Problems of Integration in the European Research and Education Area, Cahul, Republic of Moldova, 2022.
- Eurostat. (2023). Hemp production in the EU. Agriculture and rural development. Retrieved from https://agriculture.ec.europa.eu/farming/crop-productions-andplant-based-products/hemp_en Accessed September 16, 1023
- Baldini, M., Ferfuia, C., Zuliani, F., Danuso, F. (2020). Suitability assessment of different hemp (Cannabis sativa L.) varieties to the cultivation environment. Industrial Crops and Products, 143, Article 111860. https://doi.org/10.1016/j.indcrop.2019.111860
- Kaur, G., Kander, R. (2023). The sustainability of industrial hemp: A literature review of its economic, environmental, and social sustainability. Sustainability, 15(8), Article 6457. https://doi.org/10.3390/su15086457
- Veit, D. (2023). Bast Fibers. Chapter in a book: Fibers. Springer, Cham. 2023. https://doi.org/10.1007/978-3-031-15309-9_6
- Small, E. (2015). Evolution and classification of Cannabis sativa (Marijuana, Hemp) in relation to human utilization. The Botanical Review, 81(3), 189–294. https://doi.org/10.1007/s12229-015-9157-3
- Shen, P., Gao, Z., Fang, B., Rao, J., Chen, B. (2021). Ferreting out the secrets of industrial hemp protein as emerging functional food ingredients. Trends in Food Science and Technology, 1–15. https://doi.org/10.1016/j.tifs.2021.03.022
- Capcanari, T., Chirsanova, A., Negoița, C., Covaliov, E., Siminiuc, R. (October 20–22, 2022). Agro-industrial potential of Cannabis Sativa L. seeds as a source of biological active substances. International Conference Modern Technologies in the Food Industry, TUM, Chisinau, 2022.
- Rusu, I.-E., Marc (Vlaic), R. A., Mureşan, C. C., Mureşan, A. E., Filip, M. R., Onica, B.-M. et al. (2021). Advanced characterization of hemp flour (Cannabis sativa L.) from dacia secuieni and zenit varieties, compared to wheat flour. Plants, 10(6), Article 1237. https://doi.org/10.3390/plants10061237
- Crini, G., Lichtfouse, E., Chanet, G., Morin-Crini, N. (2020). Traditional and New Applications of Hemp. Chapter in a book: Sustainable Agriculture Reviews 42. Springer International Publishing, 2020. https://doi.org/10.1007/978-3-03041384-2_2
- Alonso-Esteban, J. I., González-Fernández, M. J., Fabrikov, D., de Cortes SánchezMata, M., Torija-Isasa, E., Guil-Guerrero, J. L. (2023). Fatty acids and minor functional compounds of hemp (Cannabis sativa L.) seeds and other Cannabaceae species. Journal of Food Composition and Analysis, 115, Article 104962. https://doi.org/10.1016/j.jfca.2022.104962
- Golimowski, W., Teleszko, M., Zając, A., Kmiecik, D., Grygier, A. (2023). Effect of the bleaching process on changes in the fatty acid profile of raw hemp seed oil (Cannabis sativa). Molecules, 28(2), Article 769. https://doi.org/10.3390/molecules28020769
- Chen, T., He, J., Zhang, J., Li, X., Zhang, H., Hao, J., Li, L. (2012). The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chemistry, 134(2), 1030–1037. https://doi.org/10.1016/j.foodchem.2012.03.009
- Liu, M., Childs, M., Loos, M., Taylor, A., Smart, L. B., Abbaspourrad, A. (2023). The effects of germination on the composition and functional properties of hemp seed protein isolate. Food Hydrocolloids, 134, Article 108085. https://doi.org/10.1016/j.foodhyd.2022.108085
- Sciacca, F., Virzì, N., Pecchioni, N., Melilli, M. G., Buzzanca, C., Bonacci, S. et al. (2023). Functional end-use of hemp seed waste: Technological, qualitative, nutritional, and sensorial characterization of fortified bread. Sustainability, 15(17), Article 12899. https://doi.org/10.3390/su151712899
- Tura, M., Mandrioli, M., Valli, E., Toschi, T.G. (2023). Quality indexes and composition of 13 commercial hemp seed oils. Journal of Food Composition and Analysis, 117, Article 105112. https://doi.org/10.1016/j.jfca.2022.105112
- Aloo, S. O., Kwame, F. O., Oh, D.-H. (2023). Identification of possible bioactive compounds and a comparative study on in vitro biological properties of whole hemp seed and stem. Food Bioscience, 51, Article 102329. https://doi.org/10.1016/j.fbio.2022.102329
- Burton, R. A., Andres, M., Cole, M., Cowley, J. M., Augustin, M. A. (2022). Industrial hemp seed: From the field to value-added food ingredients. Journal of Cannabis Research, 4(1), Article 45. https://doi.org/10.1186/s42238-022-00156-7
- Smułek, W., Jarzębski, M. (2023). Hemp seed oil nanoemulsion with Sapindus saponins as a potential carrier for iron supplement and vitamin D. Reviews on Advanced Materials Science, 62(1), Article 20220317. https://doi.org/10.1515/rams-2022-0317
- Rupasinghe, H. P. V., Davis, A., Kumar, S. K., Murray, B., Zheljazkov, V. D. (2020). Industrial hemp (Cannabis sativa subsp. Sativa) as an emerging source for valueadded functional food ingredients and nutraceuticals. Molecules, 25(18), Article 4078. https://doi.org/10.3390/molecules25184078
- Vigil, J. M., Montera, M. A., Pentkowski, N. S., Diviant, J. P., Orozco, J., Ortiz, A. L. et al. (2020). The therapeutic effectiveness of full spectrum hemp oil using a chronic neuropathic pain model. Life, 10(5), Article 69. https://doi.org/10.3390/life10050069
- Vonapartis, E., Aubin, M.-P., Seguin, P., Mustafa, A. F., Charron, J.-B. (2015). Seed composition of ten industrial hemp cultivars approved for production in Canada. Journal of Food Composition and Analysis, 39, 8–12. https://doi.org/10.1016/j.jfca.2014.11.004
- Mattila, P., Mäkinen, S., Eurola, M., Jalava, T., Pihlava, J.-M., Hellström, J. et al. (2018). Nutritional value of commercial protein-rich plant products. Plant Foods for Human Nutrition, 73(2), 108–115. https://doi.org/10.1007/s11130-018-0660-7
- Callaway, J. C. (2004). Hempseed as a nutritional resource: An overview. Euphytica, 140, 65–72. https://doi.org/10.1007/s10681-004-4811-6
- Lan, Y., Zha, F., Peckrul, A., Hanson, B., Johnson, B., Rao, J. et al. (2019). Genotype x environmental effects on yielding ability and seed chemical composition of industrial hemp (Cannabis sativa L.) varieties grown in North Dakota, USA. Journal of the American Oil Chemists’ Society, 96(12), 1417–1425. https://doi.org/10.1002/aocs.12291
- Makovicky, P., Makovicky, P., Caja, F., Rimarova, K., Samasca, G., Vannucci, L. (2020). Celiac disease and gluten-free diet: Past, present, and future. Gastroenterology and Hepatology from Bed to Bench, 13(1), 1–7.
- Amaducci, S., Zatta, A., Pelatti, F., Venturi, G. (2008). Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. Field Crops Research, 107(2), 161–169. https://doi.org/10.1016/j.fcr.2008.02.002
- Palomares-Navarro, M. J., Sánchez-Quezada, V., Palomares-Navarro, J. J., AyalaZavala, J. F., Loarca-Piña, G. (2023). Nutritional and nutraceutical properties of selected pulses to promote gluten-free food products. Plant Foods for Human Nutrition, 78(2), 253–260. https://doi.org/10.1007/s11130-023-01060-y
- Liu, M., Toth, J. A., Childs, M., Smart, L. B., Abbaspourrad, A. (2023). Composition and functional properties of hemp seed protein isolates from various hemp cultivars. Journal of Food Science, 88(3), 942–951. https://doi.org/10.1111/1750-3841.16467
- Capcanari, T., Covaliov, E., Negoița, C., Siminiuc, R., Chirsanova, A., Reșitca, V. Et al. (2023). Hemp seed cake flour as a source of proteins, minerals and polyphenols and its impact on the nutritional, sensorial and technological quality of bread. Foods, 12, Article 4327. https://doi.org/10.3390/foods12234327
- Burton, R.A., Andres, M., Cole, M., Cowley, J.M., Augustin, M.A. (2022). Industrial hemp seed: From the field to value-added food ingredients. Journal of Cannabis Research, 4, Article 45. https://doi.org/10.1186/s42238-022-00156-7
- Al Ubeed, H. M. S., Brennan, C. S., Schanknecht, E., Alsherbiny, M. A., Saifullah, M., Nguyen, K. et al. (2022). Potential applications of hemp (Cannabis sativa L.) extracts and their phytochemicals as functional ingredients in food and medicinal supplements: A narrative review. International Journal of Food Science and Technology, 57(12), 7542–7555. https://doi.org/10.1111/ijfs.16116
- Neacsu, M., Christie, J. S., Duncan, G. J., Vaughan, N. J., Russell, W. R. (2022). Buckwheat, fava bean and hemp flours fortified with anthocyanins and other bioactive phytochemicals as sustainable ingredients for functional food development. Nutraceuticals, 2(3), 150–161. https://doi.org/10.3390/nutraceuticals2030011
- Amaral, J. S., Casal, S., Pereira, J. A., Seabra, R. M., Oliveira, B. P. P. (2003). Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in portugal. Journal of Agricultural and Food Chemistry, 51(26), 7698–7702. https://doi.org/10.1021/jf030451d
- Porto, C. D., Decorti, D., Natolino, A. (2015). Potential oil yield, fatty acid composition, and oxidation stability of the hempseed oil from four Cannabis sativa L. cultivars. Journal of Dietary Supplements, 12(1), 1–10. https://doi.org/10.3109/19390211.2014.887601
- Siano, F., Moccia, S., Picariello, G., Russo, G., Sorrentino, G., Di Stasio, M. et al. (2018). Comparative study of chemical, biochemical characteristic and ATR-FTIR analysis of seeds, oil and flour of the edible fedora cultivar hemp (Cannabis sativa L.). Molecules, 24(1), Article 83. https://doi.org/10.3390/molecules24010083
- Kriese, U., Schumann, E., Weber, W. E., Beyer, M., Brühl, L., Matthäus. (2004). Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica, 137(3), 339–351. https://doi.org/10.1023/B: EUPH.0000040473.23941.76
- Malomo, S., Onuh, J., Girgih, A., Aluko, R. (2015). Structural and antihypertensive properties of enzymatic hemp seed protein hydrolysates. Nutrients, 7(9), 7616–7632. https://doi.org/10.3390/nu7095358
- Chen, H., Xu, B., Wang, Y., Li, W., He, D., Zhang, Y. et al. (2023). Emerging natural hemp seed proteins and their functions for nutraceutical applications. Food Science and Human Wellness, 12(4), 929–941. https://doi.org/10.1016/j.fshw.2022.10.016
- Tang, C.-H., Ten, Z., Wang, X.-S., Yang, X.-Q. (2006). Physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate. Journal of Agricultural and Food Chemistry, 54(23), 8945–8950. https://doi.org/10.1021/jf0619176
- Choo, W.-S., Birch, J., Dufour, J.-P. (2007). Physicochemical and quality characteristics of cold-pressed flaxseed oils. Journal of Food Composition and Analysis, 20(3–4), 202–211. https://doi.org/10.1016/j.jfca.2006.12.002
- Banskota, A. H., Tibbetts, S. M., Jones, A., Stefanova, R., Behnke, J. (2022). Biochemical characterization and in vitro digestibility of protein isolates from hemp (Cannabis sativa L.) by-products for salmonid feed applications. Molecules, 27(15), Article 4794. https://doi.org/10.3390/molecules27154794
- Reggio, P.H. (2003). Pharmacophores for ligand recognition and activation / inactivation of the cannabinoid receptors. Current Pharmaceutical Design, 9(20), 1607–1633. https://doi.org/10.2174/1381612033454577
- Rizzo, G., Storz, M. A., Calapai, G. (2023). The role of hemp (Cannabis sativa L.) as a functional food in vegetarian nutrition. Foods, 12(18), Article 3505. https://doi.org/10.3390/foods12183505
- House, J. D., Neufeld, J., Leson, G. (2010). Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibilitycorrected amino acid score method. Journal of Agricultural and Food Chemistry, 58(22), 11801–11807. https://doi.org/10.1021/jf102636b
- Schultz, C. J., Lim, W. L., Khor, S. F., Neumann, K. A., Schulz, J. M., Ansari, O. et al. (2020). Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. Journal of Agriculture and Food Research, 2, Article 100025. https://doi.org/10.1016/j.jafr.2020.100025
- Mattila, P. H., Pihlava, J.-M., Hellström, J., Nurmi, M., Eurola, M., Mäkinen, S. et al. (2018). Contents of phytochemicals and antinutritional factors in commercial protein-rich plant products. Food Quality and Safety, 2(4), 213–219. https://doi.org/10.1093/fqsafe/fyy021
- Alonso-Esteban, J. I., Torija-Isasa, M. E., de Cortes Sánchez-Mata, M. (2022). Mineral elements and related antinutrients, in whole and hulled hemp (Cannabis sativa L.) seeds. Journal of Food Composition and Analysis, 109, Article 104516. https://doi.org/10.1016/j.jfca.2022.104516
- Bernstein, N., Gorelick, J., Zerahia, R., Koch, S. (2019). Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Frontiers in Plant Science, 10, Article 736. https://doi.org/10.3389/fpls.2019.00736
- Rubilar, M., Gutiérrez, C., Verdugo, M., Shene, C., Sineiro, J. (2010). Flaxseed as a source of functional ingredients. Journal of Soil Science and Plant Nutrition, 10(3). 373–377. https://doi.org/10.4067/S0718-95162010000100010
- Ma, Z. F., Zhang, H., Teh, S. S., Wang, C. W., Zhang, Y., Hayford, F. et al. (2019). Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxidative Medicine and Cellular Longevity, 2019, Article 2437397. https://doi.org/10.1155/2019/2437397
- Smeriglio, A., Galati, E. M., Monforte, M. T., Lanuzza, F., D’Angelo, V., Circosta, C. (2016). Polyphenolic compounds and antioxidant activity of cold-pressed seed oil from finola cultivar of Cannabis sativa L. Phytotherapy Research, 30(8), 1298–1307. https://doi.org/10.1002/ptr.5623
- Frassinetti, S., Moccia, E., Caltavuturo, L., Gabriele, M., Longo, V., Bellani, L. et al. (2018). Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chemistry, 262, 56–66. https://doi.org/10.1016/j.foodchem.2018.04.078
- Moccia, S., Siano, F., Russo, G. L., Volpe, M. G., La Cara, F., Pacifico, S. et al. (2020). Antiproliferative and antioxidant effect of polar hemp extracts (Cannabis sativa L., Fedora cv.) in human colorectal cell lines. International Journal of Food Sciences and Nutrition, 71(4), 410–423. https://doi.org/10.1080/09637486.2019.1666804
- Russo, R., Reggiani, R. (2013). Variability in antinutritional compounds in hempseed meal of Italian and French varieties. Plant, 1(2), 25–29. https://doi.org/10.11648/j.plant.20130102.13
- Yu, L. L., Zhou, K. K., Parry, J. (2005). Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chemistry, 91(4), 723–729. https://doi.org/10.1016/j.foodchem.2004.06.044
- Bourjot, M., Zedet, A., Demange, B., Pudlo, M., Girard-Thernier, C. (2016). In Vitro mammalian arginase inhibitory and antioxidant effects of amide derivatives isolated from the hempseed cakes (Cannabis sativa). Planta Medica International Open, 3(03), e64–e67. https://doi.org/10.1055/s-0042-119400
- Luo, Q., Yan, X., Bobrovskaya, L., Ji, M., Yuan, H., Lou, H. et al. (2017). Antineuroinflammatory effects of grossamide from hemp seed via suppression of TLR-4-mediated NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. Molecular and Cellular Biochemistry, 428(1–2), 129–137. https://doi.org/10.1007/s11010-016-2923-7
- Maiolo, S. A., Fan, P., Bobrovskaya, L. (2018). Bioactive constituents from cinnamon, hemp seed and polygonum cuspidatum protect against H2O2 but not rotenone toxicity in a cellular model of Parkinson’s disease. Journal of Traditional and Complementary Medicine, 8(3), 420–427. https://doi.org/10.1016/j.jtcme.2017.11.001
- Wang, S., Luo, Q., Fan, P. (2019). Cannabisin F from hemp (Cannabis sativa) seed suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia as SIRT1 modulator. International Journal of Molecular Sciences, 20(3), Article 507. https://doi.org/10.3390/ijms20030507
- Yan, X., Tang, J., dos Santos Passos, C., Nurisso, A., Simões-Pires, C. A., Ji, M. et al. (2015). Characterization of lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. Journal of Agricultural and Food Chemistry, 63(49), 10611–10619. https://doi.org/10.1021/acs.jafc.5b05282
- Pontonio, E., Verni, M., Dingeo, C., Diaz-de-Cerio, E., Pinto, D., Rizzello, C. G. (2020). Impact of enzymatic and microbial bioprocessing on antioxidant properties of hemp (Cannabis sativa L.). Antioxidants, 9(12), Article 1258. https://doi.org/10.3390/antiox9121258
- Teh, S.-S., Bekhit, A. E.-D. A., Carne, A., Birch, J. (2016). Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain. Food Chemistry, 203, 199–206. https://doi.org/10.1016/j.foodchem.2016.02.057
- Logarušić, M., Slivac, I., Radošević, K., Bagović, M., Redovniković, I. R., Srček, V. G. (2019). Hempseed protein hydrolysates’ effects on the proliferation and induced oxidative stress in normal and cancer cell lines. Molecular Biology Reports, 46(6), 6079–6085. https://doi.org/10.1007/s11033-019-05043-8
- Rodriguez-Martin, N. M., Toscano, R., Villanueva, A., Pedroche, J., Millan, F., Montserrat-de La Paz, S. et al. (2019). Neuroprotective protein hydrolysates from hemp (Cannabis sativa L.) seeds. Food and Function, 10(10), 6732–6739. https://doi.org/10.1039/C9FO01904A
- Zanoni, C., Aiello, G., Arnoldi, A., Lammi, C. (2017). Hempseed peptides exert hypocholesterolemic effects with a statin-like mechanism. Journal of Agricultural and Food Chemistry, 65(40), 8829–8838. https://doi.org/10.1021/acs.jafc.7b02742
- Palmer, S. L., Thakur, G. A., Makriyannis, A. (2002). Cannabinergic ligands. Chemistry and Physics of Lipids, 121(1–2), 3–19. https://doi.org/10.1016/S00093084(02)00143-3
- Iversen, L. (2003). Cannabis and the brain. Brain, 126(6), 1252–1270. https://doi.org/10.1093/brain/awg143
- Harding, E. K., Souza, I. A., Gandini, M. A., Gadotti, V. M., Ali, M. Y., Huang, S. et al. (2023). Differential regulation of Cav3.2 and Cav2.2 calcium channels by CB1 receptors and cannabidiol. British Journal of Pharmacology, 180(12), 1616–1633. https://doi.org/10.1111/bph.16035
- Román-Vargas, Y., Porras-Arguello, J. D., Blandón-Naranjo, L., Pérez-Pérez, L. D., Benjumea, D. M. (2023). Evaluation of the analgesic effect of high-cannabidiolcontent cannabis extracts in different pain models by using polymeric micelles as vehicles. Molecules, 28(11), Article 4299. https://doi.org/10.3390/molecules28114299
- Wu, J.-H., Saseendrakumar, B.R., Moghimi, S., Sidhu, S., Kamalipour, A., Weinreb, R. N. et al. (2023). Epidemiology and factors associated with cannabis use among patients with glaucoma in the All of Us research program. Heliyon, 9(5), Article e15811. https://doi.org/10.1016/j.heliyon.2023.e15811
- Ried, K., Tamanna, T., Matthews, S., Sali, A. (2023). Medicinal cannabis improves sleep in adults with insomnia: A randomised double-blind placebo-controlled crossover study. Journal of Sleep Research, 32(3), Article e13793. https://doi.org/10.1111/jsr.13793
- Nduma, B. N., Mofor, K. A., Tatang, J., Ekhator, C., Ambe, S., Fonkem, E. (2023). The use of cannabinoids in the treatment of inflammatory bowel disease (IBD): A review of the literature. Cureus,15(3), Article e36148. https://doi.org/10.7759/cureus.36148
Дополнительные файлы
