Overview of instrumental methods used in the field of food analysis
- Authors: Rozhdestvenskaya L.N.1,2, Romanenko S.P.1, Lomovsky I.O.3, Lachugin A.P.1,2
-
Affiliations:
- Novosibirsk Scientific Research Institute of Hygiene of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being
- Novosibirsk State Technical University
- Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 7, No 4 (2024)
- Pages: 523-534
- Section: Articles
- URL: https://journal-vniispk.ru/2618-9771/article/view/311680
- DOI: https://doi.org/10.21323/2618-9771-2024-7-4-523-534
- ID: 311680
Cite item
Full Text
Abstract
About the authors
L. N. Rozhdestvenskaya
Novosibirsk Scientific Research Institute of Hygiene of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; Novosibirsk State Technical University
Email: lachugin_ap@niig.su
20, Karl Marx Ave., Novosibirsk, 630073; 7, Parkhomenko str., Novosibirsk, 630108
S. P. Romanenko
Novosibirsk Scientific Research Institute of Hygiene of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being
Email: lachugin_ap@niig.su
7, Parkhomenko str., Novosibirsk, 630108
I. O. Lomovsky
Institute of Solid State Chemistry and Mechanochemistry Siberian Branch of the Russian Academy of Sciences
Email: lachugin_ap@niig.su
18, Kutateladze str., Novosibirsk, 630090
A. P. Lachugin
Novosibirsk Scientific Research Institute of Hygiene of the Federal Service for Supervision of Consumer Rights Protection and Human Well-Being; Novosibirsk State Technical University
Email: lachugin_ap@niig.su
7, Parkhomenko str., Novosibirsk, 630108
References
- Derossi, A., Husain, A., Caporizzi, R., Severini, C. (2019). Manufacturing personalized food for people uniqueness. An overview from traditional to emerging technologies. Critical Reviews in Food Science and Nutrition, 60(7), 1141–1159. https://doi.org/10.1080/10408398.2018.1559796
- Anzani, C., Boukid, F., Drummond, L., Mullen, A. M., Álvarez, C. (2020). Optimising the use of proteins from rich meat co-products and non-meat alternatives: Nutritional, technological and allergenicity challenges. Food Research International, 137, Article 109575. https://doi.org/10.1016/j.foodres.2020.109575
- Valoppi, F., Agustin, M., Abik, F., Morais de Carvalho, D., Sithole, J., Bhattarai, M. et al. (2021). Insight on current advances in food science and technology for feeding the world population. Frontiers in Sustainable Food Systems, 5, Article 626227. https://doi.org/10.3389/fsufs.2021.626227
- Hassoun, A., Aït-Kaddour, A., Abu-Mahfouz, A. M., Rathod, N. B., Bader, F., Barba, F. J. et al. (2022). The fourth industrial revolution in the food industry — part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 63(23), 6547–6563. https://doi.org/10.1080/10408398.2022.2034735
- Liu, F., Li, M., Wang, Q., Yan, J., Han, S., Ma, C. et al. (2022). Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Critical Reviews in Food Science and Nutrition, 63(23), 6423–6444. https://doi.org/10.1080/10408398.2022.2033683
- Onwezen, M. C., Bouwman, E. P., Reinders, M. J., Dagevos, H. (2021). A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite, 159, Article 105058. https://doi.org/10.1016/j.appet.2020.105058
- Sim, S. Y. J., SRV, A., Chiang, J. H., Henry, C. J. (2021). Plant proteins for future foods: A roadmap. Foods, 10(8), Article 1967. https://doi.org/10.3390/foods10081967
- Jiménez-Munoz, L. M., Tavares, G. M., Corredig, M. (2021). Design future foods using plant protein blends for best nutritional and technological functionality. Trends in Food Science and Technology, 113, 139–150. https://doi.org/10.1016/j.tifs.2021.04.049
- Kapsokefalou, M., Roe, M., Turrini, A., Costa, H. S., Martinez-Victoria, E., Marletta, L. et al. (2019). Food composition at present: New challenges. Nutrients, 11(8), Article 1714. https://doi.org/10.3390/nu11081714
- Villamiel, M., Méndez-Albiñana, P. (2022). Update of challenges for food quality and safety management. Journal of Agriculture and Food Research, 10, Article 100393. https://doi.org/10.1016/j.jafr.2022.100393
- Шур, П. З., Суворов, Д. В., Зеленкин, С. Е., Лир, Д. Н. (2023). Идентификация потенциальной опасности потребления новых видов пищевых продуктов для здоровья населения (систематический обзор). Гигиена и санитария, 102(5), 495–501. https://doi.org/10.47470/0016-9900-2023-102-5-495-501
- Boisen, S., Hvelplund, T., Weisbjerg, M. R. (2000). Ideal amino acid profiles as a basis for feed protein evaluation. Livestock Production Science, 64(2), 239–251. https://doi.org/10.1016/s0301-6226(99)00146-3
- Trott, J. F., Young, A. E., McNabb, B. R., Yang, X., Bishop, T. F., van Eenennaam, A. L. (2022). Animal health and food safety analyses of six offspring of a genomeedited hornless bull. GEN Biotechnology, 1(2), 192–206. https://doi.org/10.1089/genbio.2022.0008
- Torkashvand, F., Vaziri, B., Maleknia, S., Heydari, A., Vossoughi, M., Mahboudi, F. (2020). Designed amino acid feed in improvement of production and quality targets of a therapeutic monoclonal antibody. PLOS ONE, 10(10), Article e0140597. https://doi.org/10.1371/journal.pone.0140597
- Salazar, A., Keusgen, M., von Hagen, J. (2016). Amino acids in the cultivation of mammalian cells. Amino Acids, 48(5), 1161–1171. https://doi.org/10.1007/s00726-016-2181-8
- D’Este, M., Alvarado-Morales, M., Angelidaki, I. (2018). Amino acids production focusing on fermentation technologies — A review. Biotechnology Advances, 36(1), 14–25. https://doi.org/10.1016/j.biotechadv.2017.09.001
- EFSA Scientific Committee. (2015). Risk profile related to production and consumption of insects as food and feed. EFSA Journal, 13(10), Article 4257. https://doi.org/10.2903/j.efsa.2015.4257
- Pan, J., Xu, H., Cheng, Y., Mintah, B. K., Dabbour, M., Yang, F. et al. (2022). Recent insight on edible insect protein: Extraction, functional properties, allergenicity, bioactivity, and applications. Foods, 11(19), Article 2931. https://doi.org/10.3390/foods11192931
- David-Birman, T., Raften, G., Lesmes, U. (2018). Effects of thermal treatments on the colloidal properties, antioxidant capacity and in-vitro proteolytic degradation of cricket flour. Food Hydrocolloids, 79, 48–54. https://doi.org/10.1016/j.foodhyd.2017.11.044
- Codex Alimentarius (2019). Guidelines for rapid risk analysis following instances of detection of contaminants in food where there is no regulatory level. CXG 92–2019. Retrieved from https://www.fao.org/fao-who-codexalimentarius/shproxy/en/?lnk=1&url=https%3A%2F%2Fworkspace.fao.org%2Fsites%2Fcodex%2FStandards%2FCXG+92–2019%2FCXG_092e.pdf Accessed March 03,2024
- Shur, P. Z., Zaitseva, N. V. (2018). Health risk assessment when giving grounds for hygienic criteria of food products safety. Health Risk Analysis, 4, 43–56. https://doi.org/10.21668/health.risk/2018.4.05.eng
- Шур, П. З., Зайцева, Н. В., Хотимченко, С. А., Федоренко, Е. В., Сычик, С. И., Фокин, В. А. и др. (2019). К вопросу установления допустимых суточных доз химических веществ в пищевых продуктах по критериям риска здоровью. Гигиена и санитария, 98(2), 189–195. https://doi.org/10.18821/0016-9900-2019-98-2-189-195
- Зайцева, Н. В., Хотимченко, С. А., Шур, П. З., Суворов, Д. В., Зеленкин, С. Е., Бессонов, В. В. (2023). Методические подходы к интегральной оценке и категорированию потенциально опасных химических веществ, непреднамеренно присутствующих в пищевых продуктах. Вопросы питания, 92(1), 26–35. https://doi.org/10.33029/0042-8833-2023-92-1-26-35
- Giusti, A. M., Bignetti, E., Cannella, C. (2008). Exploring new frontiers in total food quality definition and assessment: From chemical to neurochemical properties. Food and Bioprocess Technology, 1(2),130–142. https://doi.org/10.1007/s11947-007-0043-9
- Sabaté, J., Harwatt, H., Soret S. (2016). Environmental nutrition: A new frontier for public health. American Journal of Public Health, 106(5), 815–821. https://doi.org/10.2105/ajph.2016.303046
- Combs, G. F., Trumbo, P. R., McKinley, M. C., Milner, J., Studenski, S., Kimura, T. et al. (2013). Biomarkers in nutrition: New frontiers in research and application. Annals of the New York Academy of Sciences. 1278(1), 1–10. https://doi.org/10.1111/nyas.12069
- LanguaL™ — the International Framework for Food Description. Retrieved from http://www.langual.org/Accessed March 20, 2024
- Ispirova, G., Cenikj, G., Ogrinc, M., Valenčič, E., Stojanov, R., Korošec, P. et al. (2022). Cafeteria FCD Corpus: Food consumption data annotated with regard to different food semantic resources. Foods, 11(17), Article 2684. https://doi.org/10.3390/foods11172684
- European Food Safety Authority (2015). Food classification standardisation — The FoodEx2 system (Revision 2). Retrieved from http://www.efsa.europa.eu/en/datex/datexfoodclass.htm Accessed March 20, 2024
- Kapsokefalou, M., Roe, M., Turrini, A., Costa, H. S., Martinez-Victoria, E., Marletta, L. et al. (2019). Food composition at present: New challenges. Nutrients, 11(8), Article 1714. https://doi.org/10.3390/nu11081714
- Hinojosa-Nogueira, D., Pérez-Burillo, S., Navajas-Porras, B., Ortiz-Viso, B., de la Cueva, S. P., Lauria, F. et al. (2021). Development of an unified food composition database for the European project "Stance4Health". Nutrients, 13(12), Article 4206. https://doi.org/10.3390/nu13124206
- Murphy, S. P., Charrondiere, U. R., Burlingame, B. (2016). Thirty years of progress in harmonizing and compiling food data as a result of the establishment of INFOODS. Food Chemistry, 193, 2–5. https://doi.org/10.1016/j.foodchem.2014.11.097
- Nielsen, S. S. (2017). Food analysis laboratory manual. Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-44127-6
- Nielsen, S. S. (2017). Food Analysis. Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-45776-5
- Nielsen, S. S. (2018). Food Analysis. Springer Cham, 2018.
- Oliveri, P., Forina, M. (2012). Data analysis and chemometrics. Chapter in a book: Chemical Analysis of Food: Techniques and Applications. Academic Press, 2012. https://doi.org/10.1016/b978-0-12-384862-8.00002-9
- Latimer, G. W. J. (2023). Official Methods of Analysis of AOAC INTERNATIONAL (22nd Edition). Oxford University Press, 2023. https://doi.org/10.1093/9780197610145.001.0001
- Sarkar, T., Salauddin, M., Kirtonia, K., Pati, S., Rebezov, M., Khayrullin, M. et al. (2022). A review on the commonly used methods for analysis of physical properties of food materials. Applied Science, 12(4), Article 2004. https://doi.org/10.3390/app12042004
- Igual, M., Martínez-Monzó, J. (2022). Physicochemical properties and structure changes of food products during processing. Foods, 11, Article 2365. https://doi.org/10.3390/foods11152365
- Johnson, G. (2005). Encyclopedia of Analytical Science (2nd edition). Amsterdam: Elsevier Academic Press, 2005. http://doi.org/10.1108/09504120510632723
- Martínez, S., Carballo, J. (2021). Physicochemical, sensory and nutritional properties of foods affected by processing and storage. Foods, 10(12), Article 2970. https://doi.org/10.3390/foods10122970
- Büttner, J., Borth, R., Boutwell, J., Broughton, P., Bowyer, R. (1975). Provisional recommendation on quality control in clinical chemistry. Part 1. General principles and terminology. Journal of Clinical Chemistry and Clinical Biochemistry, 13, 523–531.
- Rodríguez-Carrasco, Y. (2022). Foodomics: Current and future perspectives in food analysis. Foods, 11(9), Article 1238. https://doi.org/10.3390/foods11091238
- FAO/INFOODS. Food composition databases. Retrieved from https://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/ Accessed March 03, 2024
- Scrimshaw, N.S. (1997). INFOODS: The international network of food data systems. The American Journal of Clinical Nutrition, 65(4 Suppl), 1190S1193S. https://doi.org/10.1093/ajcn/65.4.1190S
- Charrondiere, U.R., Rittenschober, D., Nowak, V., Stadlmayr, B., Wijesinha-Bettoni, R., Haytowitz D. (2016). Improving food composition data quality: Three new FAO/INFOODS guidelines on conversions, data evaluation and food matching. Food Chemistry, 193, 75–81. https://doi.org/10.1016/j.foodchem.2014.11.055
- USDA FoodData Central. Retrieved from https://www.ars.usda.gov/northeastarea/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/database-resources/ Accessed March 03, 2024
- FoodStandarts Australian Food Composition Database — Release 2. Retrieved from https://www.foodstandards.gov.au/science/monitoringnutrients/afcd/Pages/downloadableexcelfiles.aspx Accessed March 05, 2024.
- Fineli. Retrieved from https://fineli.fi/fineli/en/tietoa-palvelusta Accessed March 05, 2024
- DTU. Frida. Retrieved from https://frida.fooddata.dk Accessed March 05, 2024.
- Информационно-аналитическая система. База данных: Химический состав пищевых продуктов, используемых в Российской Федерации. Электронный ресурс: http://web.ion.ru/food/FD_tree_grid.aspx Дата доступа: 05.03.2024)
- MEXT Standard tables of food composition in Japan. Retrieved from https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374030.html Accessed March 05, 2024.
- Рождественская, Л. Н. (2022). Современные тренды и вызовы индустрии питания. Глава в книге: Социально-экономические процессы: новое видение, вызовы, тенденции. Петрозаводск: Новая Наука 2022. https://doi.org/10.46916/04032022-2-978-5-00174-490-0
- Langyan, S., Bhardwaj, R., Radhamani, J., Yadav, R., Gautam, R.K., Kalia, S., et al. (2022). A quick analysis method for protein quantification in oilseed crops: a comparison with standard protocol. Frontiers in Nutrition, 9, Article 892695. https://doi.org/10.3389/fnut.2022.892695
- AOAC976.05–1977. (1996). Protein (Crude) in animal feed and pet food. Retrieved from http://aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=2265 Accessed March 05, 2024
- Sáez-Plaza, P., Navas, M. J., Wybraniec, S., Michałowski, T., Asuero, A. G. (2013). An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish and quality control. Critical Review in Analytical Chemistry, 43, 224–272. https://doi.org/10.1080/10408347.2012.751787
- Miller, E. L., Bimbo, A. P., Barlow, S. M., SHeridan, B., Burks, L. B. W., Barrins, T. et al. (2007). Repeatability and reproducibility of determination of the nitrogen content of fishmeal by the combustion (Dumas) method and comparison with the Kjeldahl method: Interlaboratory study. Journal of AOAC International, 90(1), 6–20. https://doi.org/10.1093/jaoac/90.1.6
- Mariotti, F., Tomé, D., Mirand, P. P. (2008). Converting nitrogen into protein–beyond 6.25 and Jones’ factors. Critical Reviews in Food Science and Nutrition, 48(2), 177–184. https://doi.org/10.1080/10408390701279749
- Determination of Crude Protein in Grain and Grain Products for Food and Feed by the Dumas Combustion Principle. Retrieved from https://icc.or.at/store/167-determination-of-crude-protein-in-grain-and-grain-products-for-food-andfeed-by-the-dumas-combustion-principle-pdf Accessed March 05, 2024
- Shea, F., Watts, C. E. (1939). Dumas method for organic nitrogen. Industrial and Engineering Chemistry Analytical Edition, 11(6), 333–334. https://doi.org/10.1021/ac50134a013
- Hayes, M. (2020). Measuring protein content in food: An overview of methods. Foods, 9(10), Article 1340. https://doi.org/10.3390/foods9101340
- Moore, J.C., DeVries, J.W., Lipp, M., Griffiths, J.C., Abernethy, D.R. (2010) Total protein methods and their potential utility to reduce the risk of food protein adulteration. Comprehensive Reviews in Food Science and Food Safety, 9(4), 330– 357. https://doi.org/10.1111/j.1541-4337.2010.00114.x
- Zheng, K., Wu, L., He, Z., Yang, B., Yang, Y. (2017). Measurement of the total protein in serum by biuret method with uncertainty evaluation. Measurement, 112, 16–21. http://doi.org/10.1016/j.measurement.2017.08.013
- Kruger, N.J. (2009). The Bradford Method for Protein Quantitation. Chapter in a book: The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-198-7_4
- Nakayama, Y., Yamaguchi, H., Einaga, N., Esumi, M. (2016). Pitfalls of DNA quantification using DNAbinding fluorescent dyes and suggested solutions. PLoS ONE, 11(3), Article e0150528. https://doi.org/10.1371/journal.pone.0150528
- Лакиза, Н. В., Неудачина, Л. К. (2015). Анализ пищевых продуктов. Екатеринбург: Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, 2015.
- Arroyo-Maya, I. J., McClements, D. J. (2016). Application of ITC in foods: A powerful tool for understanding the gastrointestinal fate of lipophilic compounds. Biochimica et Biophysica Acta (BBA) — General Subjects, 1860(5), 1026–1035. https://doi.org/10.1016/j.bbagen.2015.10.001
- Khalef, N., Campanella, O., Bakri, A. (2016). Isothermal calorimetry: Methods and applications in food and pharmaceutical fields. Current Opinion in Food Science, 9, 70–76. https://doi.org/10.1016/j.cofs.2016.09.004
- Velázquez-Campoy, A., Ohtaka, H., Nezami, A., Muzammil, S., Freire, E. (2004). Isothermal Titration Calorimetry. Current Protocols in Cell Biology, 23(1), Chapter 17. Unit 17.8. https://doi.org/10.1002/0471143030.cb1708s23
- Зайцева, Н. В., Хотимченко, С. А., Шур, П. З., Суворов, Д. В., Зеленкин, С. Е., Бессонов, В. В. (2023). Методические подходы к интегральной оценке и категорированию потенциально опасных химических веществ, непреднамеренно присутствующих в пищевых продуктах. Вопросы питания, 92(1), 26–35. https://doi.org/10.33029/0042-8833-2023-92-1-26-35
- Мишина К. А. (2023) Метрологическое обеспечение в области изотермической калориметрии титрования: перспективы разработки стандартных образцов. Эталоны. Стандартные образцы, 19(3), 31–43. https://doi.org/10.20915/2077-1177-2023-19-3-31-43
- Hewavitharana, G. G., Perera, D. N., Navaratne, S. B., Wickramasinghe, I. (2020). Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: а review. Arabian Journal of Chemistry, 13(8), 6865–6875. https://doi.org/10.1016/j.arabjc.2020.06.039
- Señoráns, F. J., Luna, P. (2012). Sample preparation techniques for the determination of fats in food. Comprehensive Sampling and Sample Preparation, 4, 203–211. https://doi.org/doi/10.1016/B978-0-12-381373-2.00134-4
- Zhou, X., Zhang, Z., Liu, X., Wu, D., Ding, Y., Li, G. et al. (2020). Typical reactive carbonyl compounds in food products: Formation, influence on food quality, and detection methods. Comprehensive Reviews in Food Science and Food Safety, 19(2), 503–529. https://doi.org/10.1111/1541-4337.12535
- Wagner, K.-H., Plasser, E., Proell, C., Kanzler, S. (2008). Comprehensive studies on the trans fatty acid content of Austrian foods: Convenience products, fast food and fats. Food Chemistry, 108(3), 1054–1060. https://doi.org/10.1016/j.foodchem.2007.11.038
- Shin, J.-M., Hwang, Y.-O., Tu, O.-J., Jo, H.-B., Kim, J.-H., Chae, Y.-Z. et al. (2013). Comparison of different methods to quantify fat classes in bakery products. Food Chemistry, 136 (2), 703–709. https://doi.org/10.1016/j.foodchem.2012.08.033
- Servaes, K., Maesen, M., Prandi, B., Sforza, S., Elst, K. (2015). Polar lipid profile of nannochloropsis oculata determined using a variety of lipid extraction procedures. Journal of Agricultural and Food Chemistry, 63(15), 3931–3941, 1https://doi.org/10.1021/acs.jafc.5b00241
- Fakirov, S. (2006). Modified Soxhlet apparatus for high-temperature extraction. Journal of Applied Polymer Science, 102 (2), 2013–2014. https://doi.org/10.1002/app.23397
- López-Bascón, M. A., Luque de Castro, M. D. (2020). Soxhlet extraction. Chapter in a book: Liquid-Phase Extraction. Elsevier, 2020. https://doi.org/10.1016/B978-0-12-816911-7.00011-6
- Cheng, H., Erichsen, H., Soerensen, J., Petersen, M. A., Skibsted, L. H. (2019). Optimizing water activity for storage of high lipid and high protein infant formula milk powder using multivariate analysis. International Dairy Journal, 93, 92–98. https://doi.org/10.1016/j.idairyj.2019.02.008
- Liu, Z., Ezernieks, V., Rochfort, S., Cocks, B. (2018). Comparison of methylation methods for fatty acid analysis of milk fat. Food Chemistry, 261, 210–215. https://doi.org/10.1016/j.foodchem.2018.04.053
- Shinn, S. E., Proctor, A. (2013). Rapid lipid extraction from egg yolks. Journal of the American Oil Chemists' Society, 90(2), 315–316, https://doi.org/10.1007/s11746-012-2155-2
- Kato, S., Iseki, T., Hanzawa, Y., Otoki, Y., Ito, J., Kimura, F. et al. (2017). Evaluation of the mechanisms of mayonnaise phospholipid oxidation. Journal of Oleo Science, 66(4), 369–374. https://doi.org/10.5650/jos.ess16187
- Bligh, E. G., Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
- Iverson, S. J., Lang, S. L. C., Cooper, M. H. (2001). Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36 (11), 1283–1287. https://doi.org/10.1007/s11745-001-0843-0
- Breil, C., Abert Vian, M., Zemb, T., Kunz, W., Chemat, F. (2017). “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. International Journal of Molecular Sciences, 18(4), Article 708. https://doi.org/10.3390/ijms18040708
- Destandau, E., Michel, T., Elfakir, C. (2013). Microwave-assisted extraction. Chapter in a book: Green Chemistry Series. RSC Publishing, 2013. https://doi.org/10.1039/9781849737579–00113
- Costa, D. dos S. V., Bragagnolo, N. (2016). Development and validation of a novel microwave assisted extraction method for fish lipids. European Journal of Lipid Science and Technology, 119(3), Article 1600108. https://doi.org/10.1002/ejlt.201600108
- Akanda, M. J. H., Sarker, M. Z. I., Ferdosh, S., Manap, M. Y. A., Ab Rahman, N. N. N., Ab Kadir, M. O. (2012). Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources. Molecules, 17(2), 1764– 1794. https://doi.org/10.3390/molecules17021764
- Sahena, F., Zaidul, I. S. M., Jinap, S., Karim, A. A., Abbas, K. A., Norulaini, N. A. N. et al. (2009). Application of supercritical CO2 in lipid extraction — a review. Journal of Food Engineering, 95(2), 240–253. https://doi.org/10.1016/j.jfoodeng.2009.06.026
- Brunner, G. (2005). Supercritical fluids: Technology and application to food processing. Journal of Food Engineering, 67(1–2), 21–33. https://doi.org/10.1016/j.jfoodeng.2004.05.060
- Berg, H., Turner, C., Dahlberg, L., Mathiasson, L. (2000). Determination of food constituents based on SFE: Applications to vitamins A and E in meat and milk. Journal of Biochemical and Biophysical Methods, 43(1–3), 391–401. https://doi.org/10.1016/S0165-022X(00)00063-4
- Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035
- Liu, L., Na, L., Niu, Y., Guo, F., Li, Y., Sun, C. (2013). An ultrasonic assisted extraction procedure to free fatty acids from the liver samples of mice. Journal of Chromatographic Science, 51(4), 376–382. https://doi.org/10.1093/chromsci/bms151
- Pérez, R. A., Albero, B. (2023). Ultrasound-assisted extraction methods for the determination of organic contaminants in solid and liquid samples. TrAC Trends in Analytical Chemistry, 166, Article 117204. https://doi.org/10.1016/j.trac.2023.117204
- Power, A. C., Chapman, J., Chandra, S., Cozzolino, D. (2019). Ultraviolet-visible spectroscopy for food quality analysis. Chapter in a book: Evaluation Technologies for Food Quality. Woodhead Publishing, 2019. https://doi.org/10.1016/b978-0-12-814217-2.00006-8
- Cavdaroglu, C., Ozen, B. (2023). Applications of UV–Visible, fluorescence and mid-infrared spectroscopic methods combined with chemometrics for the authentication of apple vinegar. Foods, 12(6), Article 1139. https://doi.org/10.3390/foods12061139
- Stoscheck, C. M. (1990). Quantitation of Protein. Chapter in a book: Me thods in Enzymology.Academic Press, 1990. https://doi.org/10.1016/0076-6879(90)82008-p
- Nawrocka, A., Lamorsk, J. (2013). Determination of food quality by using spectroscopic methods. Chapter in a book: Advances in Agrophysical Research. InTech, 2013. https://doi.org/10.5772/52722
- Feng, L., Wu, B., Zhu, S., He, Y., Zhang, C. (2021). Application of visible/infrared spectroscopy and hyperspectral imaging with machine learning techniques for identifying food varieties and geographical origins. Frontiers in Nutrition, 8, Article 680357. https://doi.org/10.3389/fnut.2021.680357
- Mendes, E., Duarte, N. (2021). Mid-infrared spectroscopy as a valuable tool to tackle food analysis: A literature review on coffee, dairies, honey, olive oil and wine. Foods, 10(2), Article 477. https://doi.org/10.3390/foods10020477
- Mohd Fairulnizal, M. N., Vimala, B., Rathi, D. N., Mohd Naeem, M. N. (2019). Atomic absorption spectroscopy for food quality evaluation. Chapter in a book: Technology and Nutrition, Evaluation Technologies for Food Quality. Woodhead Publishing, 2019. https://doi.org/10.1016/B978-0-12-814217-2.00009-3
- El Youssfi, M., Sifou, A., Ben Aakame, R., Mahnine, N., Arsalane, S., Halim, M. et al. (2023). Trace elements in foodstuffs from the Mediterranean basin — occurrence, risk assessment, regulations, and prevention strategies: A review. Biological Trace Element Research, 201(5), 2597–2626. https://doi.org/10.1007/s12011-022-03334-z
- Filatova, D. G., Es'kina, V. V., Baranovskaya, V. B., Karpov, Y. A. (2020). Presentday possibilities of high-resolution continuous-source electrothermal atomic absorption spectrometry. Journal of Analytical Chemistry. 75(5), 563–568. https://doi.org/10.1134/S1061934820050044
- Пупышев, А. А., Суриков, В. Т. (2012). Масс-спектрометрия с индуктивно связанной плазмой. Образование ионов. LAP Lambert Academic Publishing, 2012.
- Tetiana, M. Derkach, Olga P. Baula. (2017). Pharmacopoeia methods for elemental analysis of medicines: A comparative study. Bulletin of Dnipropetrovsk University. Series Chemistry, 25(2), 73–83. https://doi.org/10.15421/081711
- Santos, A. D. C., Fonseca, F. A., Lião, L. M., Alcantara, G. B., Barison, A. (2015). High-resolution magic angle spinning nuclear magnetic resonance in foodstuff analysis. TrAC Trends in Analytical Chemistry, 73, 10–18. https://doi.org/10.1016/j.trac.2015.05.003
- Kirtil, E., Cikrikci, S., McCarthy, M. J., Oztop, M. H. (2017). Recent advances in time domain NMR and MRI sensors and their food applications. Current Opinion in Food Science, 17, 9–15. https://doi.org/10.1016/j.cofs.2017.07.005
- Sobolev, A. P., Ingallina, C., Spano, M., Di Matteo, G., Mannina, L. (2022). NMRbased approaches in the study of foods. Molecules, 27(22), Article 7906. https://doi.org/10.3390/molecules27227906
- Moughan, P. J. (2023). Use of isotope-labeled body or dietary proteins to determine dietary amino acid digestibility. The Journal of Nutrition, 153(7), 1858– 1865. https://doi.org/10.1016/j.tjnut.2023.05.018
- Capitani, D., Mannina, L., Proietti, N., Sobolev, A. P., Tomassini, A., Miccheli, A. et al. (2010). Monitoring of metabolic profiling and water status of Hayward kiwifruits by nuclear magnetic resonance. Talanta, 82(5), 1826–1838. https://doi.org/10.1016/j.talanta.2010.07.080
- Capitani, D., Mannina, L., Proietti, N., Sobolev, A. P., Tomassini, A., Miccheli, A. et al. (2013). Metabolic profiling and outer pericarp water state in zespri, CI. GI, and hayward kiwifruits. Journal of Agricultural and Food Chemistry. 61(8), 1727–1740. https://doi.org/10.1021/jf3028864
- Maestrello, V., Solovyev, P., Bontempo, L., Mannina, L., Camin, F. (2022). Nuclear magnetic resonance spectroscopy in extra virgin olive oil authentication. Comprehensive Reviews in Food Science and Food Safety, 21(5), 4056–4075. https://doi.org/10.1111/1541-4337.13005
- Candrian, U. (1995). Polymerase chain reaction in food microbiology. Journal of Microbiological Methods, 23(1), 89–103. https://doi.org/10.1016/0167–7012(95)00019-H
- Klancnik, A., Kovač, M., Toplak, N., Piskernik, S., Jeršek, B. (2012). PCR in food analysis. Chapter in a book: Polymerase chain reaction. InTech, 2012. https://doi.org/10.5772/38551
- Salihah, N. T., Hossain, M. M., Lubis, H., Ahmed, M. U. (2016). Trends and advances in food analysis by real-time polymerase chain reaction. Journal of Food Science and Technology, 53(5), 2196–2209. https://doi.org/10.1007/s13197-016-2205-0
- Asensio, L., González, I., García, T., Martín, R. (2008). Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control, 19(1), 1–8. https://doi.org/10.1016/j.foodcont.2007.02.010
- Koestel, C., Simonin, C., Belcher, S., Rösti, J. (2016). Implementation of an enzyme linked immunosorbent assay for the quantification of allergenic egg residues in red wines using commercially available antibodies. Journal of Food Science, 81(8), T2099–T2106. https://doi.org/10.1111/1750-3841.13378
- Salimon, J., Omar, T. A., Salih, N. (2014). Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography. The Scientific World Journal, 1, Article 906407. https://doi.org/10.1155/2014/906407
- Shantha, N. C., Napolitano, G. E. (1992). Gas chromatography of fatty acid. Journal of Chromatography A, 624(1–2), 37–51. https://doi.org/10.1016/0021-9673(92)85673-H
- Salimon, J., Omar, T. A., Salih, N. (2017). An accurate and reliable method for identification and quantification of fatty acids and trans fatty acids in food fats samples using gas chromatography. Arabian Journal of Chemistry, 10, S1875– S1882. https://doi.org/10.1016/j.arabjc.2013.07.016
- Mondal, D. D., Chakraborty, U., Bera, M., Ghosh, S., Kar, D. (2023). An overview of nutritional profiling in foods: Bioanalytical techniques and useful protocols. Frontiers in Nutrition, 10, Article 1124409. https://doi.org/10.3389/fnut.2023.1124409
- Lehotay, S., Hajšlová, J. (2002). Application of gas chromatography in food analysis. Trends in Analytical Chemistry, 21(9–10), 686–697. https://doi.org/10.1016/S0165-9936(02)00805-1
- Bradbury, A. G. W. (1990). Gas chromatography of carbohydrates in food. Chapter in a book: Principles and Applications of Gas Chromatography in Food Analysis. Springer, Boston, MA, 1990. https://doi.org/10.1007/978-1-4613-0681-8_4
- Rutherfurd, S. M. (2009). Accurate determination of the amino acid content of selected feedstuffs. International Journal of Food Sciences and Nutrition, 60 (suppl 7), 53–62. https://doi.org/10.1080/09637480802269957
- Nie, Q., Nie, S. (2019). High-performance liquid chromatography for food quality evaluation. Chapter in a book: Evaluation Technologies for Food Quality. Woodhead Publishing, 2019. https://doi.org/10.1016/B978-0-12-814217-2.00013-5
- Sirhan, A. Y., Tan, G. H., Wong, R. C. S. (2011). Method validation in the determination of aflatoxins in noodle samples using the QuEChERS method (Quick, Easy, Cheap, Effective, Rugged and Safe) and high performance liquid chromatography coupled to a fluorescence detector (HPLC–FLD), Food Control, 22(12), 1807–1813. https://doi.org/10.1016/j.foodcont.2011.04.007
- Ibáñez, A. B., Bauer, S. (2014). Analytical method for the determination of organic acids in dilute acid pretreated biomass hydrolysate by liquid chromatography-time-of-flight mass spectrometry. Biotechnology for Biofuels, 7(1), Article 145. https://doi.org/10.1186/s13068–014–0145–3
- Zeppa, G., Conterno, L., Gerbi, V. (2001). Determination of organic acids, sugars, diacetyl, and acetoin in cheese by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 49(6), 2722–2726. https://doi.org/10.1021/jf0009403
- Захарова, А. М., Карцова, Л. А., Гринштейн, И. Л. (2013). Определение органических кислот, углеводов и подсластителей в пищевых продуктах и биологически активных добавках методом высокоэффективной жидкостной хроматографии. Аналитика и контроль, 17(2), 204–210.
- Picazo, M., Rochera, C., Vicente, E., Miracle, M. R., Camacho, A. (2013). Spectrophotometric methods for the determination of photosynthetic pigments in stratified lakes: A critical analysis based on comparisons with HPLC determinations in a model lake. Limnetica, 32, 139–158. https://doi.org/10.23818/limn.32.13
- Yuan, X., Kim, C. J., Lee, R., Kim, M., Shin, H. J., Kim, L. et al. (2022). Validation of a multi-residue analysis method for 287 pesticides in citrus fruits mandarin orange and grapefruit using liquid chromatography-tandem mass spectrometry. Foods, 11(21), Article 3522. https://doi.org/10.3390/foods11213522
- Park, J., Kim, H., Hong, S., Suh, H.-J., Lee, C. (2019). High-performance liquid chromatography and gas chromatography to set the analysis method of stearoyl lactylate, a food emulsifier. Food Science and Biotechnology, 28(6), 1669–1677. https://doi.org/10.1007/s10068-019-00629-1
- So, J. S., Lee, S. B., Lee, J. H., Nam, H. S., Lee, J. K. (2023). Simultaneous determination of dehydroacetic acid, benzoic acid, sorbic acid, methylparaben and ethylparaben in foods by high-performance liquid chromatography. Food Science and Biotechnology, 32(9), 1173–1183. https://doi.org/10.1007/s10068-023-01264-7
- Pylypiw, H. M., Grether, M. T. (2000). Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods. Journal of Chromatography A, 883(1–2), 299–304. https://doi.org/10.1016/S0021-9673(00)00404-0
- Dong, Y. (1999). Capillary electrophoresis in food analysis. Trends in Food Science and Technology, 10(3), 87–93. https://doi.org/10.1016/S0924-2244(99)00031-X
- Piñero, M., Bauza, R., Arce, L. (2011). Thirty years of capillary electrophoresis in food analysis laboratories: Potential applications. Electrophoresis, 32(11), 1379–1393. https://doi.org/10.1002/elps.201000541
- Gao, Z., Zhong W. (2022). Recent (2018–2020) development in capillary electrophoresis. Analytical and Bioanalytical Chemistry, 414(1), 115–130. https://doi.org/10.1007/s00216-021-03290-y
- Rio, D. C., Ares, M., Hannon, G. J., Nilsen, T. W. (2010). Nondenaturing agarose gel electrophoresis of RNA. Cold Spring Harbor Protocols, 2010(6), Article pdb. prot5445. https://doi.org/10.1101/pdb.prot5445
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
- Francisco da Silva Neto, G., Luíza de Andrade Rodrigues, M., Fonseca, A. (2021). A new quantitative gel electrophoresis method with image-based detection for the determination of food dyes and metallic ions. Talanta, 221, Article 121602. https://doi.org/10.1016/j.talanta.2020.121602
- Dario, G. (2012). Electrophoresis as a useful tool in studying the quality of meat products. Chapter in a book: Electrophoresis. InTech, 2012. https://doi.org/10.5772/45761
- Kalogianni, D. P. (2021). Lateral flow assays for food authentication. Chapter in a book: Biosensors in Agriculture: Recent Trends and Future Perspectives. Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-66165-6_16
- Courtney, R. C., Taylor, S. L., Baumert, J. L. (2016). Evaluation of commercial milk-specific lateral flow devices. Journal of Food Protection, 79(10), 1767–1774. https://doi.org/10.4315/0362-028X.JFP16-127
- Greenfield, H., Southgate, D. A. (2003). Food Composition Data: Production, management, and use. Elsevier Science Publishers, FAO, Rome, 2003. https://doi.org/10.1007/978-1-4615-3544-7
- Md Noh, M. F., Gunasegavan, R. D.-N., Mustafa Khalid, N., Balasubramaniam, V., Mustar, S., Abd Rashed, A. (2020). Recent techniques in nutrient analysis for food composition database. Molecules, 25(19), Article 4567. https://doi.org/10.3390/molecules25194567
Supplementary files
