Химические контаминанты, попадающие в пищевую продукцию из полимерной упаковки. Обзор
- Авторы: Утьянов Д.А.1, Вострикова Н.Л.1, Василевская Е.Р.1, Куликовский А.В.1, Карабанов С.Ю.1
-
Учреждения:
- Федеральный научный центр пищевых систем им. В. М. Горбатова
- Выпуск: Том 8, № 1 (2025)
- Страницы: 29-35
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2618-9771/article/view/310372
- DOI: https://doi.org/10.21323/2618-9771-2025-8-1-29-35
- ID: 310372
Цитировать
Полный текст
Аннотация
В статье приведен обзор научной литературы, посвященной проблеме контаминации пищевой продукции различного рода веществами из упаковочных материалов. Рассматриваемая проблема масштабна — существует большое количество видов соединений, которые могут попасть в пищевую продукцию из упаковки. Контаминация пищевой продукции может происходить за счет миграции веществ, используемых для производства упаковочного материала. Наибольший риск загрязнения пищевого продукта представляют пластиковые полимерные упаковки. Интерес научного сообщества и необходимость изучения описываемой темы обусловлены тем, что превалирующая доля всех соединений, которые мигрируют в пищевой продукт из упаковки, обладают токсической или канцерогенной активностью, поэтому представляют потенциальный риск для здоровья человека. Из всех описанных в настоящей статье контаминантов наиболее изученными являются бисфенолы. Большое количество исследований по их миграции в пищевые продукты показали, что бисфенолы были обнаружены практически во всех видах пищевой продукции: мясная, молочная, рыбная, фруктовая, овощная. Значительная миграция бисфенолов наблюдается в соковой продукции и в бутилированной воде. Ввиду неблагоприятного воздействия бисфенола А на организм человека его использование в производстве упаковочных материалов для пищевой продукции запрещено. Однако этот запрет привел к распространению аналогов, а именно бисфенолов Б, С, Ф, АФ и пр., которые обнаруживаются в пищевых продуктах. Проведенный обзор показал, что проблема загрязнения пищевой продукции контаминантами из упаковочных материалов требует серьезного внимания со стороны научного сообщества.
Ключевые слова
Об авторах
Д. А. Утьянов
Федеральный научный центр пищевых систем им. В. М. Горбатова
Автор, ответственный за переписку.
Email: a.kulikovskii@fncps.ru
109316, Москва, ул. Талалихина, 26
Н. Л. Вострикова
Федеральный научный центр пищевых систем им. В. М. Горбатова
Email: a.kulikovskii@fncps.ru
109316, Москва, ул. Талалихина, 26
Е. Р. Василевская
Федеральный научный центр пищевых систем им. В. М. Горбатова
Email: a.kulikovskii@fncps.ru
109316, Москва, ул. Талалихина, 26
А. В. Куликовский
Федеральный научный центр пищевых систем им. В. М. Горбатова
Email: a.kulikovskii@fncps.ru
109316, Москва, ул. Талалихина, 26
С. Ю. Карабанов
Федеральный научный центр пищевых систем им. В. М. Горбатова
Email: a.kulikovskii@fncps.ru
109316, Москва, ул. Талалихина, 26
Список литературы
- Ibrahim, Yu. S., Anuar, S. T., Azmi, A. A., Khalik, W. M. A. W. M., Lehata, S., Hamzah, S. R. et al. (2021). Detection of microplastics in human colectomy specimens. JGH Open,5(1), 116–121. https://doi.org/10.1002/jgh3.12457
- Hu, C. J., Garcia, M. A., Nihart, A., Liu, R., Yin, L., Adolphi, N. et al. (2024). Microplastic presence in dog and human testis and its potential association with sperm count and weights of testis and epididymis. Toxicological Sciences, 200(2), 235–240. https://doi.org/10.1093/toxsci/kfae060
- Qin, X., Cao, M., Peng, T., Shan, H., Lian, W., Yu, Y. et al. (2024). Features, potential invasion pathways, and reproductive health risks of microplastics detected in human uterus. Environmental Science and Technology, 58(24), 10482–10493. https://doi.org/10.1021/acs.est.4c01541
- Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O. et al. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, Article 106274. https://doi.org/10.1016/j.envint.2020.106274
- Amato-Lourenço, L. F., Carvalho-Oliveira, R., Ribeiro Júnior, G., Galvão, L. dos S., Ando, R. A., Mauad, T. (2021). Presence of airborne microplastics in human lung tissue. Journal of Hazardous Materials. 416, Article 126124. https://doi.org/10.1016/j.jhazmat.2021.126124
- Yang, Q., Peng, Y., Wu, X., Cao, X., Zhang, P., Liang, Z. et al. (2025). Microplastics in human skeletal tissues: Presence, distribution and health implications. Environment International, 196, Article 19316. https://doi.org/10.1016/j.envint.2025.109316
- Zhan, W., Rhim, J.-W. (2022). Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packaging and Shelf Life, 31, Article 100806. https://doi.org/10.1016/j.fpsl.2021.100806
- Bampidis, V., Azimonti, G., Bastos, M. de L., Christensen, H., Dusemund, B., Durjava, M. F. et al. (2021). Safety and efficacy of a feed additive consisting of titanium dioxide for all animal species (Kronos International, Inc.). EFSA Journal, 19(6), Article e06630. https://doi.org/10.2903/j.efsa.2021.6630
- Naves, M. P. C., de Morais, C. R., Silva, A. C. A., Dantas, N. O., Spanó, M. A., de Rezende, A. A. A. (2018). Assessment of mutagenic, recombinogenic and carcinogenic potential of titanium dioxide nanocristals in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology, 112, 273–281. https://doi.org/10.1016/j.fct.2017.12.040
- Shi, J., Han, S., Zhang, J., Liu, Y., Chen, Z., Jia, G. (2022). Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NanoImpact, 25, Article 100377. https://doi.org/10.1016/j.impact.2021.100377
- Wu, Y., Chen, L., Chen, F., Zou, H., Wang, Z. (2020). A key moment for TiO2: Prenatal exposure to TiO2 nanoparticles may inhibit the development of offspring. Ecotoxicology and Environmental Safety, 202, Article 110911. https://doi.org/10.1016/j.ecoenv.2020.110911
- El Yamani, N., Rubio, L., García-Rodríguez, A., Kažimírová, A., Rundén-Pran, E., Magdalena, B. et al. (2022). Lack of mutagenicity of TiO2 nanoparticles in vitro despite cellular and nuclear uptake. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 882, Article 503545. https://doi.org/10.1016/j.mrgentox.2022.503545
- Bastardo-Fernández, I., Chekri, R., Oster, C., Thoury, V., Fisicaro, P., Jitaru, P. et al. (2024). Assessment of TiO2 (nano)particles migration from food packaging materials to food simulants by single particle ICP-MS/MS using a high efficiency sample introduction system. NanoImpact, 34, Article 100503. https://doi.org/10.1016/j.impact.2024.100503
- Yang, Ch., Zhu, B., Wang, J., Qin, Yu. (2019). Structural changes and nano-TiO2 migration of poly(lactic acid)-based food packaging film contacting with ethanol as food simulant. International Journal of Biological Macromolecules, 139, 85–93. https://doi.org/10.1016/j.ijbiomac.2019.07.151
- Bertoldi, C., Pena, A. de C. C., Dallegrave, A., Fernandes, A. N., Gutterres, M. (2020). Photodegradation of emerging contaminant 2-(tiocyanomethylthio) benzothiazole (TCMTB) in aqueous solution: Kinetics and transformation products. Bulletin of Environmental Contamination and Toxicology, 105(3), 443–439. https://doi.org/10.1007/s00128-020-02954-2
- Hansen, A., Brans, R., Sonsmann, F. (2021). Allergic contact dermatitis to rubber accelerators in protective gloves: Problems, challenges and solutions for occupational skin protection. Allergologie Select, 5, 335–344. https://doi.org/10.5414/ALX02265E
- Gao, W., Cheng, Y., Ni, Y., Wu, A., Song, S., Kuang, H. et al. (2024). Immunochromatographic assay for detection (2-benzothiazolylthio) methyl thiocyanate in food packaging paper materials. Food Bioscience, 60, Article 104260. https://doi.org/10.1016/j.fbio.2024.104260
- Glenn, G., Shogren, R., Jin, X., Orts, W., Hart-Cooper, W., Olson, L. (2021). Perand polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2596–2625. https://doi.org/10.1111/1541-4337.12726
- Carnero, A. R., Lestido-Cardama, A., Loureiro, P. V., Barbosa-Pereira, L., de Quirós, A. R. B., Sendón, R. (2021). Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (FCM) and its migration to food. Foods, 10(7), Article 1443. https://doi.org/10.3390/foods10071443
- Hepburn, E., Madden, C., Szabo, D., Coggan, T. L., Clarke, B., Currell, M. (2019). Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environmental Pollution, 248, 101–113. https://doi.org/10.1016/j.envpol.2019.02.018
- Ateia, M., Maroli, A., Tharayil, N., Karanfil, T. (2019). The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere, 220, 866–882. https://doi.org/10.1016/j.chemosphere.2018.12.186
- Schaider, L. A., Balan, S. A., Blum, A., Andrews, D. Q., Strynar, M. J., Dickinson, M. E. et al. (2017). Fluorinated compounds in U. S. Fast food packaging. Environmental Science and Technology Letters, 4(3), 105–111. https://doi.org/10.1021/acs.estlett.6b00435
- Barry, V., Winquist, A., Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environmental Health Perspectives, 121(11–12), 1313–1318. https://doi.org/10.1289/EHP.1306615
- Dueñas-Mas, M. J., Ballesteros-Gómez, A., de Boer, J. (2023). Determination of several PFAS groups in food packaging material from fast-food restaurants in France. Chemosphere, 339, Article 139734 https://doi.org/10.1016/j.chemosphere.2023.139734
- Alin, J., Hakkarainen, M. (2010). Type of polypropylene material significantly influences the migration of antioxidants from polymer packaging to food simulants during microwave heating. Journal of Applied Polymer Science, 118(2), 1084–1093. https://doi.org/10.1002/app.32472
- Díaz-Galiano, F. J., Gómez-Ramos, M. J., Beraza, I., Murcia-Morales, M., Fernández-Alba, A. R. (2023). Cooking food in microwavable plastic containers: In situ formation of a new chemical substance and increased migration of polypropylene polymers. Food Chemistry, 417, Article 135852. https://doi.org/10.1016/j.foodchem.2023.135852
- Bauer, A., Jesús, F., Ramos, M.J.G., Lozano, A., Fernández-Alba, A. R. (2019). Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry. Food Chemistry, 295, 274–288. https://doi.org/10.1016/j.foodchem.2019.05.105
- Fang, H., Wang, J., Lynch, R. A. (2017). Migration of di(2-ethylhexyl)phthalate (DEHP) and di-nbutylphthalate (DBP) from polypropylene food containers. Food Control, 73(Part B), 1298–1302. https://doi.org/10.1016/j.foodcont.2016.10.050
- Lau, O.-W., Wong, S.-K. (2000). Contamination in food from packaging material. Journal of Chromatography A, 882(1–2), 255–270. https://doi.org/10.1016/S0021-9673(00)00356-3
- Duty, S. M., Calafat, A. M., Silva, M. J., Ryan, L., Hauser, R. (2005). Phthalate exposure and reproductive hormones in adult men. Human Reproduction, 20(3), 604–610. https://doi.org/10.1093/humrep/deh656
- Latini, G., Del Vecchio, A., Massaro, M., Verrotti, A., De Felice, C. (2006). Phthalate exposure and male infertility. Toxicology, 226(2–3), 90–98. https://doi.org/10.1016/j.tox.2006.07.011
- Singh, S., Li, S. S.-L. (2011). Phthalates: Toxicogenomics and inferred human diseases. Genomics, 97(3), 148–157. https://doi.org/10.1016/j.ygeno.2010.11.008
- Heudorf, U., Mersch-Sundermann, V., Angerer, J. (2007). Phthalates: Toxicology and exposure. International Journal of Hygiene and Environmental Health, 210(5), 623–634. https://doi.org/10.1016/j.ijheh.2007.07.011
- Wang, Y., Qian, H. (2021). Phthalates and their impacts on human health. Healthcare, 9(5), Article 603. https://doi.org/10.3390/healthcare9050603
- Pack, E. C., Lee, K. Y., Jung, J. S., Jang, D. Y., Kim, H. S., Koo, Y. L. et al. (2021). Determination of the migration of plastic additives and non-intentionally added substances into food simulants and the assessment of health risks from convenience food packaging. Food Packaging and Shelf Life, 30, Article 100736. https://doi.org/10.1016/j.fpsl.2021.100736
- Alin, J., Hakkarainen, M. (2013). Combined chromatographic and mass spectrometric toolbox for fingerprinting migration from PET tray during microwave heating. Journal of Agricultural and Food Chemistry, 61(6), 1405–1415. https://doi.org/10.1021/jf3047847
- Aznar, M., Domeño, C., Osorio, J., Nerin, C. (2020). Release of volatile compounds from cooking plastic bags under different heating sources. Food Packaging and Shelf Life, 26, Article 100552. https://doi.org/10.1016/j.fpsl.2020.100552
- SCICOM. (2009). Migration de 4-méthylbenzophénone de l’emballage en carton imprimé vers les céréales de petit déjeuner (dossier 2009/05) Conseil urgent validé par le Comité scientifique le 16/02/2009 Retrieved from https://scicom.favvafsca.be/comitescientifique/avis/2009/_documents/CONSEILurgent_05-2009_FR_DOSSIER2009-05.pdf Accessed September 12, 2024.
- UN System Chief Executives Board for Coordination. High-Level Committee on Management. Human Resources Network (2009). Conclusions of the meeting of the Human Resources Network, 17th session (UNWTO, Madrid, 4–6 March 2009): Chief Executives Board for Coordination. Retrieved from https://digitallibrary.un.org/record/3921446?v=pdf Accessed September 12, 2024.
- Momo, F., Fabris, S., Stevanato, R. (2007). Interaction of isopropylthioxanthone with phospholipid liposomes. Biophysical Chemistry, 127(1–2), 36–40. https://doi.org/10.1016/j.bpc.2006.12.002
- Peijnenburg, A., Riethof-Poortman, J., Bayku, H., Portier, L., Bovee, T., Hoogenboom R. (2010). AhR‑agonistic, anti-androgenic, and anti-estrogenic potencies of 2-isopropylthioxanthone (ITX) as determined by in vitro bioassays and gene expression profiling. Toxicology in Vitro, 24(6), 1619–1628. https://doi.org/10.1016/j.tiv.2010.06.004
- Rhodes, M. С., Bucher, J. R., Peckham, J. C., Kissling, G. E., Hejtmancik, M. R., Chhabra, R. S. (2007). Carcinogenesis studies of benzophenone in rats and mice. Food and Chemical Toxicology, 45(5), 843–851. https://doi.org/10.1016/j.fct.2006.11.003
- Hsieh, M. H., Grantham, E. C., Liu, B., Macapagal, R., Willingham, E., Baskin, L. S. (2007). In utero exposure to benzophenone‑2 causes hypospadias through an estrogen receptor dependent mechanism. Journal of Urology, 178(4S), 1637–1642. https://doi.org/10.1016/j.juro.2007.03.190
- Jeon, H.-K., Sarma, S.N., Kim, Y.-J., Ryu, J.-C. (2008). Toxicokinetics and metabolisms of benzophenone-type UV filters in rats. Toxicology, 248(2–3), 89–95. https://doi.org/10.1016/j.tox.2008.02.009
- Ji, S., Zhang, J., Tao, G., Peng, C., Sun, Y., Hou, R. et al. (2019). Influence of heating source on the migration of photoinitiators from packaging materials into Tenax® and popcorn. Food Packaging and Shelf Life, 21, Article 100340. https://doi.org/10.1016/j.fpsl.2019.100340
- Liang, Q., Wang, Z., Du, W., Liu, W., Cao, J., Ren, J. et al. (2022). Determination of 18 photoinitiators in food paper packaging materials by FastPrep-based extraction combined with GC–MS. Food Chemistry, 377, Article 131980. https://doi.org/10.1016/j.foodchem.2021.131980
- Abril, C., Santos, J. L., Martin, J., Aparicio, I., Alonso, E. (2020). Occurrence, fate and environmental risk of anionic surfactants, bisphenol A, perfluorinated compounds and personal care products in sludge stabilization treatments. Science of the Total Environment, 711, Article 135048. https://doi.org/10.1016/j.scitotenv.2019.135048
- Macczak, A., Cyrkler, M., Bukowska, B., Michalowicz, J. (2017). Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study). Toxicology in Vitro, 41, 143–149. https://doi.org/10.1016/j.tiv.2017.02.018
- Zhang, Y.-F., Ren, X.-M., Li, Y.-Y., Yao, X.-F., Li, C.-H., Qin, Z.-F. et al. (2018). Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environmental Pollution, 237, 1072–1079. https://doi.org/10.1016/j.envpol.2017.11.027
- Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y.-L., Wu, Y. et al. (2016). Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity-A review. Environmental Science and Technology, 50(11), 5438–5453. https://doi.org/10.1021/acs.est.5b05387
- Huang, Z., Zhao, J.-L., Yang, Y.-Y., Jia, Y.-W., Zhang, Q.-Q., Chen, C.-E. et al. (2020). Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers.. Environmental Pollution, 263(Part B), Article 114361. https://doi.org/10.1016/j.envpol.2020.114361
- Yan, Z., Liu, Y., Yan, K., Wu, S., Han, Z., Guo, R. et al. (2017). Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere, 184, 318–328. https://doi.org/10.1016/j.chemosphere.2017.06.010
- Zhao, X., Qiu, W., Zheng, Y., Xiong, J., Gao, C., Hu, S. (2019). Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 180, 43–52. https://doi.org/10.1016/j.ecoenv.2019.04.083
- Jin, H., Xie, J., Mao, L., Zhao, M., Bai, X., Wen, J. et al. (2020). Bisphenol analogue concentrations in human breast milk and their associations with postnatal infant growth. Environmental Pollution, 259, Article 113779. https://doi.org/10.1016/j.envpol.2019.113779
- Li, A., Zhuang, T., Shi, W., Liang, Y., Liao, C., Song, M. et al (2020). Serum concentration of bisphenol analogues in pregnant women in China. Science of The Total Environment, 707, Article 136100. https://doi.org/10.1016/j.scitotenv.2019.136100
- Mendy, A., Salo, P. M., Wilkerson, J., Feinstein, L., Ferguson, K. K., Fessler, M. B. et al. (2020). Association of urinary levels of bisphenols F and S used as bisphenol A substitutes with asthma and hay fever outcomes. Environmental Pollution, 183, Article 108944. https://doi.org/10.1016/j.envres.2019.108944
- Cano-Nicolau, J., Valliant, C., Pellegrini, E., Charlier, T. D., Kah, O., Coumailleau, P. (2016). Estrogenic effects of several BPA analogs in the developing zebrafish brain. Frontiers in Neuroscience, 10, Article 112. https://doi.org/10.3389/fnins.2016.00112
- Mokra, K., Kuźmińska-Surowaniec, A., Woźniak, K., Michałowicz, J. (2017). Evaluation of DNA‑damaging potential of bisphenol A and its selected analogs in human peripheral blood mononuclear cells (in vitro study). Food and Chemical Toxicology, 100, 62–69. https://doi.org/10.1016/j.fct.2016.12.003
- Ali, N. F. M., Sajid, M., Abd Halim, W. I. T., Mohamed, A. H., Zain, N. N. M., Kamaruzaman, S. et. al. (2023). Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: An updated review. Microchemical Journal, 184(Part A), Article 108158. https://doi.org/10.1016/j.microc.2022.108158
- Yang, C., Wang, Y., Dong, P. Z., Li, Y., Pang, Y.-H. (2024). Determination of bisphenols in food and its contact materials migration by magnetic solid-phase extraction coupled with LC–MS/MS. Food Bioscience, 59, Article 104179. https://doi.org/10.1016/j.fbio.2024.104179
- Guan, S., Wu, H., Yang, L., Wang, Z., Wu, J. (2020). Use of a magnetic covalent organic framework material with a large specific surface area as an effective adsorbent for the extraction and determination of six fluoroquinolone antibiotics by HPLC in milk sample. Journal of Separation Science, 43(19), 3775–3784. https://doi.org/10.1002/jssc.202000616
- Tian, L., Zheng J., Pineda, M., Yargeau, V., Furlong, D., Chevrier J. et al. (2022). Targeted screening of 11 bisphenols and 7 plasticizers in food composites from Canada and South Africa. Food Chemistry, 385, Article 132675. https://doi.org/10.1016/j.foodchem.2022.132675
- Khan, M. R., Ouladsmane, M., Alammari, A. M., Azam, M. (2021). Bisphenol A leaches from packaging to fruit juice commercially available in markets. Food Packaging and Shelf Life, 28, Article 100678. https://doi.org/10.1016/j.fpsl.2021.100678
- Cunha, S. C., Fernandes, J. O. (2013). Assessment of bisphenol A and bisphenol B in canned vegetables and fruits by gas chromatography — mass spectrometry after QuEChERS and dispersive liquid–liquid microextraction. Food Control, 33(2), 549–555. https://doi.org/10.1016/j.foodcont.2013.03.028
- Kumar, A., Singh, D., Bhandari, R., Malik, A. K., Kaur, S., Singh, B. (2023). Bisphenol A in canned soft drinks, plastic-bottled water, and household water tank from Punjab, India. Journal of Hazardous Materials Advances, 9, Article 100205. https://doi.org/10.1016/j.hazadv.2022.100205
- Wang, Qi., Kaur, Y., Wu, Y., Li, S., Bai, H., Zhou, Q. (2023). β-Cyclodextrin functionalized magnetic polyamine-amine dendrimers for high enrichment and effective analysis of trace bisphenolic pollutants in beverages. Chemosphere, 328, Article 138537. https://doi.org/10.1016/j.chemosphere.2023.138537
- Yao, K., Zhang, J., Niu, Y., Zhang, X., Yang, Y., Wu, Y. et al. (2023). Multi-immunoaffinity column for the simultaneous analysis of bisphenol A and its analogues in Chinese foods by liquid chromatography tandem mass spectrometry. Food Chemistry, 422, Article 136295. https://doi.org/10.1016/j.foodchem.2023.136295
Дополнительные файлы
