


Vol 12, No 11-12 (2017)
- Year: 2017
- Articles: 13
- URL: https://journal-vniispk.ru/2635-1676/issue/view/13646
Article
Passivation of Nickel Nanoparticles at Temperatures below 0°C
Abstract
It has been experimentally demonstrated that, at temperatures below 0°C, nickel nanopowder does not ignite in dry air; however, passivation takes place, thus providing the composition stability of nickel nanoparticles in air at ambient temperature.



Theoretical Analysis of Passivating Pyrophoric Nanopowders: A Macrokinetics Approach
Abstract
In this paper we use a macrokinetics approach to propose and develop a mechanism for the ignition and passivation of a pyrophoric nanopowder layer. Assuming that the oxidizer diffusion is the rate-limiting step in the wave-propagation mechanism of passivation, we are able to determine the dependence of the maximum temperature of the nanopowder passivation on key parameters. As a result, two-stage passivation with an increasing oxidant concentration in the gas phase at the second step is proposed. We have shown that, at an allowable warm-up level, the two-stage process reduces the time required for the passivation of a nanopowder layer to be completed by several times. The minimum time of the transition to the second stage at a given rate of temperature growth has been analytically predicted. We have also made numerical simulatons that show a good agreement with the results of our approximate calculations, additionally supporting the conclusions based on the theoretical analysis used. The macrokinetic approach is successfully applied to adeqautely described the passivation of pyrophoric nanopowders when it is strictly limited due to small particle sizes by the diffusion transfer of the passivating gas into the backfill.



Study of Adsorption and Interaction of H2, O2, and CO on the Surface of Single Gold Nanoparticles and Nickel by Scanning Tunneling Microscopy
Abstract
Using scanning tunneling microscopy, we have studied the processes of adsorption and interaction of hydrogen, oxygen, and carbon monoxide on the surface of gold nanoparticles and nickel that form singleand bicomponent coatings on graphite. On the gold nanoparticles, the interaction of H2 and CO results in the formation of formyl radicals (HCO•) that get adsorbed on the substrate and are able then to oxidize with oxygen to water and CO2. Nickel nanoparticles coated with an oxide are reduced after sequential exposure to hydrogen and CO. As is established, on a bicomponent gold–nickel coating, the interaction of hydrogen and carbon monoxide also leads to the formation of adsorbed formyl radicals.



Transformations of Ethanol on Catalysts Based on Nanoporous Calcium Aluminate–Mayenite (Ca12Al14O33) and Mayenite Doped by Copper
Abstract
Catalytic properties of nondoped and copper-doped Mayenite have been studied. During ethanol conversion and ethanol steam reforming, the initial Mayenite and specimens containing 0.58 and 0.92 wt % of copper have been analyzed. All catalysts are active in both processes. The influence of the ethanol/water mole ratio on product distribution has been studied. In the course of experiments, the fact of reversible hydrogen sorption has been detected upon the thermal treatment of catalysts containing copper.



Electrochemical Properties of Li2ZnTi3O8/C Nanomaterials
Abstract
Li2ZnTi3O8/C nanomaterials are synthesized using the sol-gel method; polyvinylidene fluoride (PVDF) and sucrose are used as carbon sources. The materials are characterized using XRD, TEM, TGA, and Raman spectroscopy. The influence of the carbon precursor and the annealing temperature on the electrochemical properties of the materials is investigated. It has been shown that the addition of both polyvinylidene fluoride and sucrose leads to the formation of nanosized lithium zinc titanate and high conductive carbon. This modification leads to the enhancement of electrochemical properties of the materials; namely, the discharge capacity of Li2ZnTi3O8 and Li2ZnTi3O8/C-5F annealed at 800°C under a current of 20 mA/g are 180 and 227 mA h/g, respectively.



ZnO Nanoparticle Modification by Polyethylenimine for Biomolecule Conjugation
Abstract
This study aims to find a way for the creation of polyethyleneimine-modified biofunctionalized zinc oxide (ZnO) nanoparticles, stable in phosphate buffered saline (PBS). Biofunctionalized ZnO nanoparticles are promising for bioanalitycal applications due to a combination of diverse physico-chemical ZnO properties and selectivity of biomolecules. ZnO nanoparticles were synthesized in diethylene glycol media at 150°C. Different strategies were utilized for ZnO nanoparticle modification in order to disclose the role of polyethylenimine (PEI) in stability of colloidal system. Synthesized and modified ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy measurements, and stability of colloidal system was investigated using DLS data. Finally, ability of ZnO nanoparticles to attach proteins for potential analytical applications was proved using Bradford protein assay. Among different strategies of modification, ZnO nanoparticles modified by trisodium citrate, PEI and glutaraldehyde (GA) have showed the best stability in PBS while preserving low aggregation level and high positive surface charge.



Kinetic Regularities and Mechanisms of Hydrogen Reduction of Nanosized Oxide Materials in Thin Layers
Abstract
In this work the kinetic regularities of the hydrogen reduction of magnetic Fe3O4 nanoparticles in fine layers of powder are considered. The inapplicability of classical approaches to describe the kinetics of the reduction processes of nanosized metal oxide materials with hydrogen is confirmed. A model of the hydrogen reduction of nanosized metal oxide particles in thin layers is developed. The agreement of the model developed with experimental data is verified.



Effect of Filler Concentration and Film Thickness on Structure and Optical Properties of Poly(p-Xylylene)−Cadmium Sulphide Nanocomposites
Abstract
The effect of filler concentration (C ≈ 0–100 vol %) and film thickness (d ≈ 0.02, 0.2, 0.5, and 1.0 μm) on the optical absorption spectra and surface morphology of thin nanocomposite films based on poly(p-xylylene) and cadmium sulphide (PPX–CdS) has been studied. The PPX–CdS films are prepared by low-temperature vapor deposition polimerization on quartz and silicon substrates. A nonmonotonic dependence of the absorption spectrum red shift on the filler concentration is revealed. The red shift of the spectrum reaches a maximum at some critical concentration of the filler C0. It is observed that the value of the critical concentration C0 increases with the film thickness and equals C0 ≈ 11, 30, and 50 vol % for d ≈ 0.02, 0.5, and 1 μm, correspondingly. The average size of the nanoparticles is evaluated by an analysis of the absorption spectra (via estimating the exciton-peak wavelength). It is found that the shift in the absorption spectra is determined by a variation in the nanoparticle size. Atomic force microscopy reveals the effect of the filler content on the surface morphology of the polymer matrix in nanocomposite films and their surface roughness. The size distribution of the polymeric grains is evaluated. The most significant changes in the absorption spectra and surface morpology of the composites with a variation in the filler content are observed in the filler concentration range from 0 to C0. The absorption spectra of the composites with the filler concentration above C0 are similar, which can be attributed to the almost equal nanoparticle size in these nanocomposites. The correlation between changes in the matrix morphology and filler optical properties is established.



Synthesis and Modification of Carbon Inverse Opal Nanostructres Based on Anthracene and Their Electrochemical Characteristics
Abstract
Carbon structures with the inverse opal lattice modified with nickel compounds have been synthesized by the template method. The carbon precursor is anthracene, whose molecule has a planar structure consisting of three benzene rings. The resulting nanostructures are characterized by X-ray diffraction, scanning and high-resolution transmission electron spectroscopy, and gas adsorption–desorption. Electrochemical characteristics of composites being used as the electrode material are measured.



The Effect of Nitrogen Pressure in the Reaction Chamber on the Parameters of Titanium Nitride Obtained by Plasmodynamic Synthesis
Abstract
In this study the influence of nitrogen pressure in the reaction chamber on the parameters of the synthesized nanosized TiN using plasmodynamic direct synthesis method has been investigated. It is shown that the pressure factor is not important in the synthesis of a nanosized product.



Study of the Regimes of Scratching Probe Nanolithography
Abstract
This work presents experimental investigations into the film deposition of photoresist FP-383 by the centrifugal method and nanoscale profiling on them using scratching probe nanolithography (SPN). It is shown that a diminishing photoresist/thinner volume ratio (FP-383/RPF-383F) and an increase in rotational speed from 1000 to 5000 rpm lead to a decrease in film thickness from 1083 ± 17 to 20 ± 2 nm. For a photoresist/thinner volume ratio of 1: 15, an increase in rotational speed from 1000 to 5000 rpm leads to the film thickness and surface roughness decreasing from 50 ± 6 to 20 ± 2 nm and from 3.16 ± 0.20 to 2.23 ± 0.10 nm, respectively. The nanostructure-manufacturing technique on the thin photoresist film surface is developed using SPN, through which nanostructures with diameters from 380 ± 32 to 16 ± 3 nm are manufactured on 20-nm-thick FP-383 film. The results can be useful for developing nanostructures of micro- and nanoelectronics micro- and nanosystems using scanning probe microscope.



Biosensor Based on Screen-Printed Electrode and Glucose-Oxidase Modified with the Addition of Single-Walled Carbon Nanotubes and Thermoexpanded Graphite
Abstract
The modification of an electrode produced by a matrix printing head with the use of glucose oxidase (GOD), single-walled carbon nanotubes (SWCNTs), and thermoexpanded graphite (TEG) has been studied. During glucose oxidation, modification by SWCNTs leads to the effect of direct electron transfer. Both nanomaterials increase the magnitude of the sensitivity coefficient (SC) from 0.11 to 0.24 mA M–1 in the case of glucose oxidase–and ferrocene-based electrodes when modification is done with the addition of TEG and up to 0.62 mA M–1 when modification is done with the addition of SWCNTs. A comparison of the characteristics of the biosensors with ferrocene and nanomaterials with those of the mediator-free biosensors based on SWCNTs and GOD shows that the biosensor provides higher sensitivity detection; the magnitude of sensitivity coefficient is 1.5 mA M–1. The higher magnitude of the SC can be explained by the occurrence of more effective electron transfer from active centers of the enzyme to the electrode. Voltammetric measurements demonstrate that electron transfer in a mediator-free biosensor is not complicated by a chemical reaction and is carried out under the control of diffusion factors. After testing the mediator-free biosensor in practice, it is possible to talk about the applicability of such a biosensor in detecting glucose in different environments, including the fermentation industry.



Features of the Mutagenic and Cytotoxic Effects of Nanosilver and Silver Sulfate in Mice
Abstract
Due to their antibacterial, antifungal, antiviral, and anti-inflammatory properties, silver and, in recent years, nanosilver (NS) have been widely used in various fields of human activity. However, it has been found that nanomaterials acquire new properties, including those with respect to toxicity. The purpose of this work was to study the effect of NS and the ionic form of silver, silver sulfate (SS), on somatic mice cells in vivo. A model that is closest to the conditions of exposure to humans, namely the supply of NS and SS with drinking water, is used. The effect of NS particles coated with gum Arabic (diameter 14 ± 0.3 nm) and SS at concentrations of 0.1, 5, 50, and 500 mg/L upon 2-week exposure is studied. A cytom assay, including counting the micronuclei and other nuclear anomalies in the cells of the bone marrow, lung, colon, and bladder, was conducted. No effect of NS or SS on bone-marrow cells is revealed in the standard micronucleus test. NS at a concentration of 50 mg/L increases the cytogenetic effect by 1.9 times at the place of action, the colon, when compared to the control. In the lungs, the rate of cells with micronuclei is increased threefold under the action of NS at a concentration of 500 mg/L. The effect of NS on reducing the proliferation level in the colon is confirmed in vivo; this effect has been previously found in vitro by other authors. SS at a concentration of 50 mg/L increases the rate of cells with cytogenetic lesions in the colon and bladder by 1.9 and 1.3 times, respectively. These effects should be considered when assessing the risk of these compounds.


