Линейные интегральные операторы в пространствах непрерывных и существенно ограниченных вектор-функций

Обложка

Цитировать

Полный текст

Аннотация

Известный критерий действия и ограниченности линейного интегрального оператора K из пространства  существенно ограниченных функций в пространство c непрерывных на компакте функций обобщается на случай функций со значениями в банаховых пространствах.

В работе также доказано, что из действия и ограниченности оператора K в пространстве c вытекает его действие и ограниченность в пространстве L, причем нормы оператора K, рассматриваемого в C и L, совпадают. Приводится точное выражение общего значения нормы оператора K в этих пространствах в терминах ядра оператора. В дополнение к этому, приводится пример интегрального оператора (для скалярных функций), который действует и ограничен в каждом из пространств C и L, но не действует из  в

Также обсуждаются удобные для проверки условия ограниченности оператора K в C и L. В случае конечномерности банахова пространства Y значений функций образа оператора K эти условия являются одновременно необходимыми и достаточными. В случае бесконечномерности Y они являются достаточными, но не являются необходимыми (это доказывается).

В случае dimY< приводятся неулучшаемые оценки для нормы оператора K в терминах 1-абсолютно суммирующей константы π1(Y), определяемой геометрическими свойствами нормы в Y, более точно, как супремум по конечным наборам ненулевых элементов Y отношения суммы норм этих элементов и супремума (по функционалам с единичной нормой) сумм абсолютных значений функционала на этих элементах.L

Полный текст

Introduction

The criteria governing the action, continuity, and compactness of the Fredholm linear integral operator K within function spaces underwent comprehensive and thorough examination during the 20th century. These considerations are extensively documented in classical monographs on functional analysis, as exemplified by references such as [1, 2]. The monograph [3, p. 100] formulates necessary and sufficient conditions for the action and boundedness of K from the space of essentially bounded functions to the space of continuous functions on a compact set. This work also provides expressions for the norm of the operator K in terms of its kernel.

In this paper, we extend and partially generalize these findings, building upon the characteristics of the integral functional derived in the study [4]. We outline the principal directions of advancement in our work concerning the well-established classical aspects of the operator K within the space of continuous functions.

  • We establish necessary and sufficient conditions for the action and boundedness of the operator K from spaces of continuous functions, as well as from the space of essentially bounded functions to the space of bounded functions, when the functions from these spaces take values in Banach spaces.
  • We demonstrate that the action and boundedness of the operator K in the space of continuous functions imply the action and boundedness in the space of essentially bounded functions, with the norms of both operators being equal.
  • We provide an expression for the norm of the operator K in terms of its kernel.
  • In the scenario of finite-dimensionality of the function value space, we establish an optimal estimate for the norm of the operator K in terms of a convenient expression through the kernel of the operator using 1-absolutely summing constant.

1. Key notations and concepts

We will use the following notations: 

Ω is closed bounded set in n with the classical Lebesgue measure μ in σ-algebra Σ Lebesgue measurable subsets of Ω.

χE is characteristic function of a set EΩ (χE(s)=1 if sE and χE(s)=0 if sE).

X and Y are real separable Banach spaces with norms X and Y, accordingly, moreover Y contains no copy of c0 (Yc0), in particular, Y reflexively.

X is the dual space of X with a norm X value of a functional fX in the point xX we will denote by f[x] or x,f.

B(X,Y) — the space of linear bounded operators from X to Y with the natural norm.

By B1(Z), we denote the closed unit ball centered at zero in the Banach space Z, that is B1(Z)={xZ:xZ1}.

T(X) is Banach space consisting of bounded functions u:ΩX, with the sup-norm u=suptΩu(t)X.

A function u:ΩX is called measurable if the preimage of any Borel set in X is Lebesgue measurable. The set of all measurable functions u:ΩX is denoted by L0(X).

By L(X), Lc(X), C(X) and P(X) we will denote the linear subspaces of the space T(X), consisting of measurable bounded functions, measurable compact-valued functions, continuous functions, and measurable finite-valued functions, respectively, equipped with the sup-norm. It is clear that the first three of these linear subspaces are closed, hence they are Banach spaces. Let’s note that P(X)C(X)Lc(X)L(X)T(X) and in the case of finite-dimensionality of X we have Lc(X)=L(X). In particular X= in the notations of the introduced functional spaces, we will omit the notation of the function value space: L=L(), C=C() and etc.

By L(X) we will denote the factor space of space L(X), consisting of classes μ-equivalent to essentially bounded functions with the essential supremum norm

uess suptΩutX.

The closed subspace Lc(X) of the Banach space L(X) is defined similarly.

If the function v:ΩY is such, that gY (which is equivalent to, gB1(Y)) the real function v(),g is Lebesgue integrable on Ω, then there exists a unique element IY such that

I,g=Ωv(s),gds  (gY) (1.1)

(see, for example, [5, p. 54]). In this case, the function v is called Pettis integrable on Ω, and I is called the Pettis integral of the function v on Ω, denoted by I=(P)Ωv(s)ds.

From the separability of Y it follows that any Pettis integrable function is measurable (see [5, p. 42, 53]).

Note that in the case when Y contains a subspace isomorphic to c0, from Lebesgue integrability on Ω the functions v(),g for each gY, in general, it does not follow that there exists IY satisfying (1.1). For an arbitrary Banach space Y, the concept of the Danford integral (which is an element of the second dual space Y) is known, which generalizes the concept of the Pettis integral [5, p. 52]. To avoid complicating the results in the direction related to different definitions of integrals, we assume in the paper that Yc0.

If the function v:ΩY is measurable and the real-valued function v()Y is Lebesgue integrable on Ω, then the function v is called Bochner integrable on Ω. The definition of the Bochner integral is analogous to the definition of the Lebesgue integral for real-valued functions (see [5, p. 44]). For the Bochner integral we will use the notation (B)Ωv(s)ds.

If the function v:ΩY is Bochner integrable, then it is Pettis integrable and the values of the integrals coincide. The reciprocal statement holds true if and only if Y is finite-dimensional [5]. For the Lebesgue integral of real functions, instead of (P) and (B), we will write.

2. Some auxiliary results

Lemma 2.1. The set P(X) is dense in Lc(X). 

Proof. Let’s now fix arbitrary uLc(X) and ε>0. Let’s choose for the relatively compact set u(Ω) a finite ε-net z1,z2,,zmu(Ω) and let’s define

Ai={sΩ:u(s)ziXε}(i=1,2,,m),E1=A1,  Ei=Ai\j=1k1Aj(i=2,3,,m).

Then uε=i=1mχEiziP(X) and  uuεε.

The next two lemmas follow directly from [4, Lemma 2.1 and Assertion 2.1].

Lemma 2.2. Let DX be a convex and closed set, and let u:ΩY be some measurable function with values in D. Then there exists a sequence of functions unC(X) with values in D that converges in measure to U. 

Lemma 2.3. Let the function f:Ω×X satisfy the Carathéodory conditions, which means that the function f(,x) is measurable for each xX, and the function f(s,) is continuous for each sΩ. Then the function ψ:Ω[0,] defined by ψ(s)=​​supxB1(X)|f(s,x)| 

is measurable, and

supuB1(L(X))Ω|f(s,u(s))|ds=ΩsupxB1(X)|f(s,x)|ds.

To prove the main results about the linear integral operator, we will need the criterion for the action and boundedness of the linear integral functional, as well as one of its properties established in the work [4], which we will present here without proofs.

Let a:ΩX. The functional H will be formally defined by the equation

H[u]=Ωa(s)[u(s)]ds. (2.1)

If the finite integral (2.1) exists for all functions u:ΩX from a certain linear subspace V of the space L0(X), then expression (2.1) defines a linear functional H:V.

Function a():ΩX is said weak-measurable (see [5, p. 41]), if xX the real function a()[x] is measurable.

Assertion 2.1. (see [4, Theorem 4.1]) The following conditions a), b), and c) are equivalent to each other:

a) H(C(X)), in other words, the functional H acts from C(X) to  and is bounded;

b) H(L(X));

c) Function a() weak-measurable and a1=def.Ωa(s)Xds<.

When any of these conditions is satisfied

H(C(X))=H(L(X))=a1.

Assertion 2.2. (see [4, Corollary 4.2]) If H(C(X)), then for any bounded sequence unL(X) converging in measure to some uL(X), it holds that H[un]H[u].

3. Definition of an integral operator and conditions on its kernel

Let k:Ω2B(X,Y). Let’s consider the linear Fredholm integral operator K with the kernel k, defined by equality

(Ku)(t)=(P)Ωk(t,s)u(s)ds,  tΩ.

Under certain conditions on the kernel k, the operator K transforms functions u:ΩX into functions Ku:ΩY.

For fixed (t,s)Ω2, let k(t,s) denote the adjoint operator of k(t,s), so that k:Ω2B(Y,X) (the asterisk notation as a subscript is used to avoid confusion with the adjoint kernel k(t,s)=k(s,t)).

Let’s introduce certain constants expressed in terms of the kernel k of the operator K and consider certain conditions on the kernel k that will be used in the following sections.

Let’s define, for now formally, the quantities ku and kw by:

ku=def.suptΩΩk(t,s)B(X,Y)ds,  kw=def.suptΩ;gB1(Y)Ωk(t,s)gXds.

and the conditions:

(a0) For all tΩ and xX function k(t,)x is measurable;

(ac) For all AΣ and xX holds Ak(,s)xdsC(Y);

(bu) Exists and is finite the quantity ku; 

(bw) Exists and is finite the quantity kw. 

Let’s emphasize that we have introduced notations for a series of conditions but do not assume them to be a priori satisfied.

Assertion 3.1. Under the condition (a0), the following properties hold:

1) For any tΩ and uL0(X), the function k(t,)u():ΩY is measurable;

2) For any tΩ, the function k(t,)B(X,Y):Ω[0,+] is measurable;

3) For any tΩ, uL0(X), and gY, the function k(t,)u(),g:Ω is measurable;

4) For any tΩ and gY, the function k(t,)gX:Ω[0,+] is measurable.

Proof. Properties 3) and 4) follow from Lemma 2.3, applied at fixed tΩ to the function f:Ω×X defined as f(s,x)=k(t,s)x,g. In particular, for 4), we use the equality

k(t,s)gX=supxB1(X)|x,k(t,s)g|=supxB1(X)|k(t,s)x,g|=supxB1(X)|f(s,x)|. (3)

Property 1) follows from theorems 2 and 3 of the paper [6].

Finally, property 2) follows from Lemma 2.3 applied at fixed tΩ to the function f~:Ω×X defined by f~(s,x)=k(t,s)xY, taking into account the equality k(t,s)B(X,Y)=supxB1(X)|f~(s,x)|.  

From Assertion 3.1, in particular, it follows that under condition (a0), the quantities ku and kw are well-defined, which can take finite non-negative values or the value +.

4. The criterion for the action and boundedness of the operator K from C(X) and from L(X) to T(Y)

Theorem 4.1. The following conditions A) to D) are equivalent to each other:

A) KB(C(X),T(Y)) (the operator K acts from C(X) to T(Y) and is bounded);

B) KB(Lc(X),T(Y));

C) KB(L(X),T(Y));

D) The conditions (a0) and (bw) are satisfied.

Moreover, if KB(C(X),T(Y)), then

KC(X)T(Y)=KLc(X)T(Y)=KL(X)T(Y)=kw. (4.1)

Proof. 10 step. Let it be fair D). We will prove that KB(L(X),T(Y)) and

KL(X)T(Y)kw. (4.2)

Let’s fix arbitrary uL(X) and tΩ. Due to condition (bw), taking into account Assertion 3.1, for any gY with a norm gY1, we have

Ω|k(t,s)u(s),g|ds=Ω|u(s),k(t,s)g|dsukw<, (4.3)

therefore, there exists an integral (P)Ωk(t,s)u(s)dsY.

Furthermore, for any uL(X) and tΩ, we have, due to (bw), taking into account (4.3):

Ku(t)Y=supgB1(Y)|Ku(t),g|=supgB1(Y)Ωu(s),k(t,s)gdskwu.

Therefore, the operator K acts from L(X) to T(Y), is bounded and holds (4.2).

20 step. Let KB(C(X),T(Y)). We will prove that property D) holds and the equality

KC(X)T(Y)=kw. (4.4)

From the condition K:C(X)T(Y) and the fact that constant functions are continuous, condition (a0) follows.

Let us fix arbitrary tΩ and gY. We define the function a:ΩX as follows by

a(s)[x]=k(t,s)x,g,  sΩ,xX (4.5)

and let us consider the functional H, defined by equation (2.1). From the condition KB(C(X),T(Y)), it follows that H(C(X)). According to Assertion 3, taking into account equation (3.1), we have, using the notation C1=B1(C(X)),  

Ωk(t,s)gXds=Ωa(s)Xds=F(C(X))=supuC1Ωa(s)[u(s)]ds. (4.6)

By the definition of the Pettis integral

supuC1Ωa(s)u(s)ds=supuC1Ωk(t,s)u(s),gds=supuC1Ωk(t,s)u(s)ds,g. (4.7)

From equations (4.6) and (4.7), it follows that

supuC1Ωk(t,s)u(s)ds,g=Ωk(t,s)gXds.

Taking the supremum over all tΩ and gB1(Y) in this equality, we obtain equation (4.4). From this equation and the inequality KC(X)T(Y)<, condition (bw) follows.

From the properties established in steps 10 and 20, the statement of the theorem follows.

5. Integral operator with values in the space of continuous functions

The following theorem provides necessary and sufficient conditions for the action and boundedness of the operator K from Lc(X) to C(Y) in terms of the norm expression of K using the kernel k. It also establishes the equality of norms of the operator considered from Lc(X) to C(Y) and from C(X) to C(Y). This theorem partially generalizes Theorem 1.1 in [3, p. 100], for the case of p=.

Theorem 5.1. KB(Lc(X),C(Y)) if and only if the conditions (ac) and (bw) hold. Moreover, if KB(Lc(X),C(Y)), then

KC(X)C(Y)=KLc(X)C(Y)=kw. (5.1)

Proof. 1) Let the conditions (ac) and (bw) be satisfied.

Its clear that condition (a0) is fair, and by virtue of Theorem 4.1 KB(Lc(X),T(Y)).

Each function vP(X) has a representation v(s)=i=1nχAi(s)xk for some positive integer n, some xiX, and pairwise disjoint sets AiΣ. The linearity and additivity properties of the Pettis integral [5] and the condition (ac) imply

(P)Ωk(t,s)u(s)ds=i=1n(P)Aik(t,s)xids

moreover, each of the integrals in the right-hand side exists and is a continuous function of t. Therefore, the integral on the left-hand side and the equality itself will be valid. Thus, it is proven that K(P(X))C(Y).

From the continuity of the operator K:Lc(X)T(Y), the inclusion K(P(X))C(Y), and Lemma 2.1, it follows straightforwardly that KB(Lc(X),C(Y)).

2) Let KB(Lc(X),C(Y)). For any AΣ and xX, we have v=χAxLc(X), thus (Kv)()=(P)Ak(,s)x,dsC(Y). Thus, condition (ac) is satisfied. Condition (bw) and equality (5.1) follow from Theorem 4.1.

The following theorem provides necessary and sufficient conditions for the boundedness of the operator K when it operates from C(X) to C(Y), expressing its norm in terms of the kernel k. This theorem generalizes the equality for the norm when p= in Theorem 1.2 from [3, p. 100].

Theorem 5.2. Let the operator K acts from C(X) to C(Y). In order for K to be bounded, it is necessary and sufficient to satisfy condition (bw).

Moreover, if KB(C(X),C(Y)), then we have KC(X)C(Y)=kw. 

Proof. From the condition K:C(X)C(Y), condition (a0) of Theorem 4.1 follows. Taking this into account, the statement of the theorem straightforwardly follows from Theorem 4.1.

As noted in [3, p. 101], a linear integral operator acting from C to C can also be considered as acting from L to L. The following theorem asserts this fact in the case of function spaces with values in Banach spaces.

Theorem 5.3. If KB(C(X),C(Y)), then KB(L(X),L(Y)) and

KC(X)C(Y)=KL(X)L(Y)=kw.

Proof. According to Theorem 4.1, from the condition KB(C(X),C(Y)), it follows that KB(L(X),T(Y)) and equality (4.1) holds. Thus, it sufficient to prove that for every uL(X), the function Ku is measurable.

Let uL(X). We choose a closed ball Du(Ω), and according to Lemma 2.2, we find a sequence of functions unC(X) with values in D that converges to u in measure. Fix arbitrary tΩ and gY, and define the function a:ΩX by (4.5). We consider the functional H defined by equality (2.1). From the condition KB(C(X),C(Y)), it follows that H(C(X)). By Assertion 2.2, H[un]H[u], which means that Kun(t),gKu(t),g.

Since K:C(X)C(Y) and C(Y)L0(Y), the real-valued functions Kun(),g are measurable. Then, the function Ku(),g is also measurable as the pointwise limit of measurable functions. Thus, we have shown that for any gY, the function Ku(),g is measurable (this property is commonly referred to as weak μ-measurability of the function Ku, see, for example, [5, p. 41]). Then, by Theorem 2 in [5, p. 42], combined with the separability of Y, it follows that the function Ku is measurable.

Remark 5.1. Among the theorems in this section, there are no simultaneously necessary and sufficient conditions in terms of the kernel for the action and continuity of the operator K from C(X) to C(Y) (Theorem 5.1 provides a close result by replacing C(X) with Lc(X), and Theorem 5 gives a close result about the boundedness of K under the prior assumption of its action). Currently, we are unaware of a corresponding result even for the case X=Y=.

As for Theorem 5.3, it can be accurately stated that the condition KB(C(X),C(Y)) implies KB(L(X),L(Y)) (with equality of norms). However, it does not generally imply either the action of the operator K from Lc(X) to C(Y) or the validity of condition (ac) from Theorem 5.1, even in the case of X=Y=. We provide a corresponding counterexample obtained in the works [7, 8].

Example 5.1. Let X=Y= and Ω=[0;1]. We define the sets

E(t)=n=11(1t)n1t2(1t)n1;1(1t)n1(0<t<1)

and let’s consider a linear integral operator K with a kernel k:[0;1]2 defined by

k(t,s)=t1χE(t)(s)if0<t<11ift{0;1}.

Then, we have KB(C,C) and KB(L,L). Furthermore, for any uL, the function Ku is continuous on the interval (0;1]. However, the operator K does not act from Lto C, and there exists a Lebesgue measurable set A[0;1] such that Ak(,s)dsC. 

6. A convenient sufficient condition for the boundedness of an integral operator

The main results of the work (Theorems 4.1 and 5.1–5.3) utilize a constant kw expressed in terms of the kernel k and represents the exact value of the norm of the operator K in a series of pairs of functional spaces. However, the constant kw the constant uses the supremum over all functionals in the unit sphere of the space Y, which is not very convenient for application. In this regard, it makes sense to analyze the possibility of replacing the constant in the main results kw with a more convenient constant ku, whose expression is a direct formal generalization of a well-known expression suptΩΩ|k(t,s)|ds for the norm of a linear integral operator in the space C (see, for example, [2, p. 183] and [3, p. 100]).

Theorem 6.1. The following statements are true:

1) If the conditions are satisfied (a0) and (bu), then KB(L(X),T(Y)).

2) If the conditions are satisfied (ac) and (bu), then KB(Lc(X),C(Y)).

3) If K:C(X)C(Y) and if the condition (bu) is satisfied, then KB(C(X),C(Y)) and KB(L(X),L(Y)).

4) The norms of the operator K in all pairs of spaces considered in statements  1)–3) are equal kw, and the estimation is valid

K=kwku.

Proof. In the conditions of any of statements 1)–3), for any tΩ and gY, we obtain, taking into account Assertion 3.1, the estimation

Ωk(t,s)gXdsΩk(t,s)B(Y,X)gYds=gYΩk(t,s)B(X,Y)ds.

From this, it follows that

kwku. (6.1)

From this inequality and Theorems 4.1, 5.1–5.3, all statements of the proven theorem follow in an obvious manner.

Remark 6.1. For any infinite-dimensional space Y, the reciprocal propositions of 1)–3) in Theorem 6.1 do not hold. Specifically, the condition (bu), unlike (bw), is not necessary for the action and boundedness of the operator K in pairs of functional spaces as stated in the theorem. Let’s demonstrate this.

It is known (see, for example, [9, p. 91]) that in every infinite-dimensional Banach space Y there exists a weakly summable sequence that is not strongly summable. In other words, there exists a sequence (yn)n of elements in Y such that for every gY, the series n=1|yn,g| converges, while simultaneously n=1ynY=.

Assuming dimY=, let us fix some sequence (yn)n satisfying the aforementioned property. Take an arbitrary countable measurable partition {En:n=1,2,} of the set Ω into sets En of positive measure, and define v(s)=n=11μEnχEn(s)yn. The constructed function v:ΩY is clearly measurable. Moreover, it satisfies the following conditions:

Ω|v(s),g|ds=n=1|yn,g|<(gY),  Ωv(s)Yds=n=1ynY=.

Thus, the function v is integrable in the sense of Pettis, but not integrable in the sense of Bochner. Moreover, this follows from [5, p. 224],

M=def.supgB1(Y)Ω|v(s),g|ds<.

Let’s now consider X= and define a function k:Ω2B(,Y) by the equation k(t,s)[x]=xv(s) (x). We then examine the linear operator K with this kernel  It is evident that condition (a0) is satisfied, and

kw=supgB1(Y)Ω|k(t,s),g|ds=M<.1ex

So, condition (bw) holds. According to Theorem 4.1, we have KB(L,T(Y)). Moreover, it is evident that for any uL, the function Ku() is constant. Hence, KB(L,C(Y)). By Theorem 4.1, we obtain KLC(Y)=KCC(Y)=kw=M. On the other hand,

ku=Ωv(s)Yds=n=1ynY=.1ex

Therefore, condition (bu) is not satisfied.

Remark 6.2. In contrast to the property established in Remark 6.1 for any infinite-dimensional Y, we note that in the case of dimY<, on the contrary, conditions (bu) and (bw) are equivalent. Therefore, all the necessary and sufficient conditions from Theorems 4.1 and 5.1–5.3 will remain valid if we replace the condition (bw) with the condition (bu) (but without replacing the constant ku in these theorems!).

In the case of dimY<, not only does the estimate (6.1) hold, but there is also a two-sided estimate that can be expressed using a special constant of the finite-dimensional space  which depends on the choice of norm in Y

Dedicating the following section of the work to establishing these properties of the operator K in the case of finite dimension Y.

7. Action and boundedness criteria of the integral operator and norm estimation in the case of dimY<

Definition 7.1. (see [10–12]) The quantity

π1(Y)=def.sup{k=1nykY​​/​​supgB1(Y)k=1n|yk,g|:n{1,2,},y1,,ynY\{0}}1ex(7.1)

is called the 1-absolutely summing constant of the norm space Y of nonzero dimension.

Remark 7.1. 1) Equality (13) correctly defines the constant π1(Y) (taking a finite positive value or the value +) for any norm space Y of nonzero dimension. Moreover, π1(Y)< if and only dimY<. Note that π1(Y)= in every infinite-dimensional Banach space Y, a consequence of the existence of a weakly summable sequence that is not strongly summable (see Remark 6.1).

2) In finite-dimensional spaces of the same dimension equipped with different norms (which, as known, are equivalent), the values of 1-absolutely summing constants, in general, are different and are related to the “geometric properties” of the space that depend on the norm.

3) In [10–12], the p-absolutely summing constant πp(Y) was introduced any p[1;), but in our work, it will be needed only for the case p=1.  

Throughout this section we assume that the 0<dimY<.

We will denote the linear space  equipped with the norm p defined by

xp=(i=1n|xi|p)1/p  (1p<),x=maxi=1,2,,n|xi|1ex

as pn (for any p[1;]).

We will present, without proof, some properties of the constant π1(Y) established in [11], [12]. Additionally, we will provide values of π1(Y) for certain specific spaces in the table.

Assertion 7.1. [properties of the constant π1(Y)]

  1. [dimY=n][nπ(Y)n];
  2. 2. π(1n)=2nnk=0nCkn|n2k|, π(2n)=πΓn+12Γn2, π(n)=n, in particular, π(12n1)=π(22n1) (n=1,2,) and

 

n

1

2

3

4

5

6

7

8

9

10

ni(Rn)

1

2

2

 

83

 

 

83

 

165

165

 

12835

 

 

12835

 

 

25663

 

π1(2n)

1

 

π2

 

2

 

3π4

 

 

83

 

 

15π16

 

 

165

 

 

35π32

 

 

12835

 

 

315π256

 

 

For any measurable function v:ΩY, let us define

v1=Ωv(s)Yds,  v=supgB1(Y)Ω|v(s),g|ds.

In this case, if the function v is non-integrable (recall that integrability in terms of Bochner and Pettis are equivalent due to the finite-dimensionality of Y), then v1=v=, and if it is integrable, both quantities are finite. Moreover (see, for example, [5, p. 50, 224]), on the linear space L1(Y) consisting of integrable functions u:ΩY (or more precisely, their classes of μ-equivalence), the quantities 1 and  are norms.

Assertion 7.2. The following inequality fulfilled:

vv1π1(Y)v,vL1(Y), (7.2)

in particular, in L1(Y) the norms 1 and  are equivalent.

Moreover, the inequality (14) is unimprovable, that is

infvL1(Y),v0v1v=1,  supvL1(Y),v0v1v=π1(Y).

Proof. Clearly, vv1, and this bound is unimprovable, as for any constant function v we have v=v1.

Let vL1(Y) and ε>0 be arbitrary. Let us find, by definition of the Bochner integral [5, p. 44], a function vε()=k=1mχЕk()ykP(Y) (where sets EkΣ are pairwise disjoint and ykY), such that vvε1ε. Then, by the definition of the constant π1(Y), we have

v1vε1+ε=k=1mykYμ(Ek)+επ1(Y)supgB1(Y)k=1m|yk,g|μ(Ek)+ε

=π1(Y)vε+επ1(Y)(v+ε)+ε.

Due to the arbitrariness of ε>0 and vL1(Y), this inequality implies the estimation

v1π1(Y)v,  vL1(Y). (7.3)

Let’s prove the unimprovability of the estimation (7.3). Fix an arbitrary δ>0 and find, according to the definition of π1(Y), such n and elements z1,z2,,znY, that

k=1nzkY/supgB1(Y)k=1n|zk,g|>π1(Y)δ.1ex

Let’s take arbitrary measurable sets A1,A2,,AnΣ with positive measure that are pairwise disjoint, and consider the function w(s)=k=1n1μ(Ak)χAk(s)zk. By construction,

w1=k=1nzkY>(π1(Y)δ)supgB1(Y)k=1n|zk,g|=(π1(Y)δ)w.1ex

The unimprovability of the estimation (7.3) is proven.

Note that inequality (7.2) is known and follows, for example, from Proposition 2.4 in [9, p. 96], formulated in terms of a random element and the p-absolutely summing operator induced by it. However, we preferred a direct proof.

Assertion 7.3. If condition (a0) is satisfied, then

π(Y)1kukwku,1ex (7.4)

in particular, conditions (bu) and (bw) are equivalent.

The inequality (7.4) is unimprovable (in both directions) for X= in the class of all functions k:Ω2B(,Y) satisfying condition (a0).  

Proof. The inequality kwku follows from Theorem 6.1. To prove its unimprovability, it is sufficient to consider the case X= and take an arbitrary nonzero element y0Y and define the kernel k:Ω2B(,Y) by the equation k(t,s)[x]=xy0. In this case, it is obvious that kw=ku=y0μΩ.

Proof of the inequality

π(Y)1kukw (7.5)

we proceed separately for two cases.

10 step. Let ku<. Fix arbitrary tΩ, ε>0, and according to Lemma 2.3, let’s find a function uL(X) with values in B1(X) such that

Ωk(t,s)B(X,Y)dsΩk(t,s)u(s)Yds+ε=v1+ε (7.6)

 where v:ΩY defined by v(s)=k(t,s)u(s). According to Assertion 0,

π(Y)1v1v=supgB1(Y)Ω|k(t,s)u(s),g|dssupgB1(Y)ΩsupxB1(X)|k(t,s)x,g|ds=supgB1(Y)Ωk(t,s)gYdskw. (7.7)

From (7.6) and (7.7) follows

π1(Y)1Ωk(t,s)B(X,Y)dskw+π1(Y)1ε.

By taking the supremum over tΩ and the infimum over ε>0 in this inequality, we obtain the estimate (7.5).

20 step. Let ku=. Fix arbitrary R>0 and according to Lemma 2.3, let’s find tΩ and a function uL(X) with values in B1(X) such that Ωk(t,s)u(s)Yds>R. By Assertion 7.2, we obtain similarly (7.7):

R<Ωk(t,s)u(s)Ydsπ1(Y)supgB1(Y)Ω|k(t,s)u(s),g|dsπ1(Y)kw.

By taking the supremum over all tΩ and R>0 in this inequality, we obtain kw=. Thus, inequality (17) is proven.

To prove the unimprovability of the estimate (17), it sufficient to consider the case when ku<. Fix an arbitrary δ>0 and according to Assertion 0, let’s find a function vL1(Y) such that v1>(π1(Y)δ)v. We define the kernel k:Ω2B(,Y) by the equation k(t,s)[x]=xv(s). In this case, it is obvious that

ku=v1>(π1(Y)δ)v=(π1(Y)δ)kw.1ex

Thus, the assertion is proven.

The main result concerning a linear integral operator in the case of a finite-dimensional Y follows directly from Theorems 4, 5–5 and Assertion 0.

Theorem 7.1. Let 0<dimY<. The following statements are true:

1) (a0)(bu)(a0)(bw)KB(C(X),T(Y))KB(L(X),T(Y)). 

2) (ac)(bu)(ac)(bw)KB(Lc(X),C(Y)). 

3) If K acts from C(X) to C(Y), then

(bu)(bw)KB(C(X),C(Y))KB(L(X),L(Y)).

4) The norms of the operator K in all the pairs of spaces considered in statements  1)– 3) are equal to kw, and additionally, the following estimate holds

π1(Y)1kuK=kwku,

which is unimprovable in the class of bounded operators acting from C(X) to T(Y). 

×

Об авторах

Мануэль Жоаким Алвеc

Университет Эдуардо Мондлане

Автор, ответственный за переписку.
Email: mjalves.moz@gmail.com
ORCID iD: 0000-0003-3713-155X

кандидат физико-математических наук, профессор кафедры математики и информатики

Мозамбик, 1100, Мапуто, Главный кампус, П.Я. 257

Елена Владимировна Алвеc

Высший институт наук и технологий Мозамбика

Email: ealves@isctem.ac.mz
ORCID iD: 0009-0000-1452-2553

кандидат физико-математических наук, доцент Школы экономики и делового администрирования

Мозамбик, 1100, Мапуто, улица 1.194 No 332, центральный C, Муниципальный район КаМпфуму

Жоао Себастьян Паулу Мунембе

Университет Эдуардо Мондлане

Email: jmunembe3@gmail.com
ORCID iD: 0000-0002-0380-6734

кандидат физико-математических наук, профессор кафедры математики и информатики

Мозамбик, 1100, Мапуто, Главный кампус, П.Я. 257

Юрий Витальевич Непомнящих

Университет Эдуардо Мондлане

Email: yuriy.nepomnyashchikh@uem.ac.mz
ORCID iD: 0009-0008-1374-4283

кандидат физико-математических наук, доцент кафедры математики и информатики

Мозамбик, 1100, Мапуто, Главный кампус, П.Я. 257

Список литературы

  1. A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, I, II, Dover Publications, Mineola–New York, 1957, 1961.
  2. L. V. Kantorovich, G.P. Akilov, Functional Analysis, 2nd ed., Pergamon Press Ltd. & “Nauka” Publishers, Oxford–New York–Toronto–Sydney–Paris–Frankfurt, 1982.
  3. P. P. Zabrejko, A. I. Koshelev, M. A. Krasnosel’skii, S.G. Mikhlin, L.S. Rakovshchik, V. J. Stecenko, Integral Equations, Noordhoff, Leyden, 1975.
  4. M. J. Alves, E. V. Alves, J. P. S. Munembe, Y. V. Nepomnyshchikh, “Linear and nonlinear integral functionals on the space of continuous vector functions”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:142 (2023), 111–124 (In Russian).
  5. J. Diestel, J. J. Uhl, Vector Measures, Math. Surveys, 15, AMS, Providence, 1977.
  6. I.V. Shragin, “Superposition measurability”, Izv. Vyssh. Uchebn. Zaved. Mat., 1975, № 1, 82-92 (In Russian).
  7. Y. V. Nepomnyashchikh, Properties of the Uryson Operator in Spaces of Uniformly Continuous and Almost Periodic Functions, Dep VINITI, no. 2787–B92, PSU, Perm, 1992 (In Russian).
  8. Y. V. Nepomnyashchikh, T. A. Sambo, “One example in the theory of linear integral operator”, Actual Problems of Mechanics, Mathematics, Computer Science, Book of Abstracts, Proceedings of the All-Russian Scientific and Practical Conference with International Participation (Perm, 2010), Perm State University, Perm, 2010, 282 (In Russian).
  9. N. N. Vakhania, V. I. Tarieladze, S.A. Chobanyan, Probability Distributions on Banach Spaces, Mathematics and its Applications, 14, Springer Dordrecht, Holland, 1987.
  10. Y. Gordon, “On p-absolutely summing constants of Banach spaces”, Isr. J. Math., 7:2 (1969), 151–163.
  11. M.G. Snobar, “On p -absolutely summing constants”, Theory of functions, functional analysis and their applications, 16 (1972), 39–41.
  12. M.I. Kadets, “The geometry of normed spaces”, J. Sov. Math., 7 (1977), 953-973.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».