Vol 29, No 145 (2024)

Original articles

Linear integral operators in spaces of continuous and essentially bounded vector functions

Alves M.J., Alves E.V., Munembe J.S., Nepomnyashchikh Y.V.

Abstract

The well-established criterion for the action and boundedness of a linear integral operator K from the space L of essentially bounded functions to the space C of functions continuous on a compact set is extended to the case of functions taking values in Banach spaces.

The study further shows that if the operator K is active and bounded in the space C, it is also active and bounded in the space L, with the norms of K in C and L being identical. A precise expression for the general value of the norm of the operator K in these spaces, expressed in terms of its operator kernel, is provided. Addicionally, an example of an integral operator (for scalar functions) is given, active and bounded in each of the spaces C and L, but not acting from L into C.

Convenient conditions for checking the boundedness of the operator K in C and L are discussed. In the case of the Banach space Y of the image function values of K being finite-dimensional, these conditions are both necessary and sufficient. In the case of infinite-dimensionality of Y they are sufficient but not necessary (as proven).

For dimY<, unimprovable estimates for the norm of the operator K are provided in terms of a 1-absolutely summing constant π1(Y), determined by the geometric properties of the norm in Y. Specifically, it is defined as the supremum over finite sets of nonzero elements of Y of the ratio of the sum of the norms of these elements to the supremum (over functionals with unit norm) of the sums of absolute values of the functional on these elements.

Russian Universities Reports. Mathematics. 2024;29(145):5-19
pages 5-19 views

Construction of smooth convex extensions of Boolean functions

Barotov D.N., Barotov R.N.

Abstract

Systems of Boolean equations are widely used in mathematics, computer science, and applied sciences. In this regard, on the one hand, new research methods and algorithms are being developed for such systems, and on the other hand, existing methods and algorithms for solving such systems are being improved. One of these methods is that, firstly, the system of Boolean equations given over the ring of Boolean polynomials is transformed into a system of equations over the field of real numbers, and secondly, the transformed system is reduced either to the problem of numerical minimization of the corresponding objective function, to a MILP or QUBO problem, to a system of polynomial equations solved on the set of integers, or to an equivalent system of polynomial equations solved by symbolic methods. There are many ways to transform a system of Boolean equations into a continuous minimization problem, since the fundamental difference between such methods and “brute force” local search algorithms is that at each iteration of the algorithm, the shift along the antigradient is performed on all variables simultaneously. But one of the main problems that arise when applying these methods is that the objective function to be minimized in the desired area can have many local minima, which greatly complicates their practical use. In this paper, a non-negative convex and continuously differentiable extension of any Boolean function is constructed, which is applied to solving an arbitrary system of Boolean equations. It is argued that the problem of solving an arbitrary system of Boolean equations can be constructively reduced to the problem of minimizing a function, any local minimum of which in the desired domain is a global minimum.

Russian Universities Reports. Mathematics. 2024;29(145):20-28
pages 20-28 views

On one problem of quadcopter control with given intermediate values of different parts of coordinates

Barseghyan V.R., Simonyan T.A., Matevosyan A.G.

Abstract

The work is devoted to the issues of mathematical modeling of the spatial motion of a quadcopter and the construction of program control laws that ensure flight with the values of part of the coordinates of the phase vector specified at intermediate times. A structural diagram of a quadcopter with four propeller engines is used, which allows for movement in space, vertical takeoff and landing. Based on the laws of theoretical mechanics, a system of differential equations is obtained that describes the spatial motion of such a quadcopter. For a linearized mathematical model of quadcopter motion, the problem of constructing program control laws with given initial and final values of the phase vector, as well as the values of part of the coordinates of the phase vector at two intermediate moments of time, has been solved. A necessary and sufficient condition for the existence of program control is obtained and the corresponding movement of the quadcopter is described. Control functions and corresponding phase trajectories of motion are constructed. To illustrate the results obtained, for specific initial, final and intermediate values, explicit expressions of the program control function, program motion are obtained and the corresponding graphs are constructed.

Russian Universities Reports. Mathematics. 2024;29(145):29-42
pages 29-42 views

On well-posedness of a mathematical model of evoked activity in the primary visual cortex

Burlakov E.O., Verkhlyutov V.M., Malkov I.N.

Abstract

We propose a mathematical model that formalizes the macro- and meso-level dynamics of electrical potentials in the primary visual cortex of subjects, which corresponds to the presentation of visual stimuli to them. The mathematical framework is based on a two-layer neural field model, represented by a system of integro-differential equations, where the deep layer of the neural field models electrical activity that does not depend directly on the spatial orientation of the visual stimuli, whereas the activity of the superficial layer is sensitive to spatially oriented stimuli. The experimental design of presenting a series of visual stimuli is formalised in the present study in terms of an impulse control problem for the aforementioned two-layer neural field model. We propose a special metric space for construction of a unique solution to the control problem under standard assumptions for mathematical neurobiology regarding the functions involved in the modeling equations. We formulate sufficient conditions for continuous dependence of the solutions on the impulse control.

Russian Universities Reports. Mathematics. 2024;29(145):43-50
pages 43-50 views

Методы с суженной матрицей Гессе как возмущенный метод Ньютона–Лагранжа

Volkov A.A., Izmailov A.F., Uskov E.I.

Abstract

For an equality-constrained optimization problem, we consider the possibility to interpret sequential quadratic programming methods employing the Hessian of the Lagrangian reduced to the null space of the constraints’ Jacobian, as a perturbed Newton–Lagrange method. We demonstrate that such interpretation with required estimates on perturbations is possible for certain sequences generated by variants of these methods making use of second-order corrections. This allows to establish, from a general perspective, superlinear convergence of such sequences, the property generally missing for the main sequences of the methods in question.

Russian Universities Reports. Mathematics. 2024;29(145):51-64
pages 51-64 views

The best approximation of analytic in a unit circle functions in the Bergman weight space B2,μ

Langarshoev M.R.

Abstract

The paper studies the issues of the best approximation of analytical functions in the Bergman weight space B2,μ. In this space, for best approximations of functions analytic in the circle by algebraic complex polynomials we obtain the exact inequalities by means of generalized modules of continuity of higher order derivatives Ωm(zrf(r),t), m, r. For classes of functions analytic in the unit circle defined by the characteristic Ωm(zrf(r),t), and the majorant Φ, the exact values of some -widths are calculated. When proving the main results of this work, we use methods for solving extremal problems in normalized spaces of functions analytic in the circle, N. P. Korneichuk’s method for estimating upper bounds for the best approximations of classes of functions by a subspace of fixed dimension, and a method for estimating from below the -widths of function classes in various Banach spaces.

 

Russian Universities Reports. Mathematics. 2024;29(145):65-76
pages 65-76 views

On some classes of systems of differential equations

Rodina L.I.

Abstract

We consider an autonomous system of differential equations x˙=f(x),wherexn, the vector function f(x) and its derivatives fixj (i,j=1,,n) are continuous. Three classes of autonomous systems are identified and the properties that systems of each class possess are described.

We will assume that the system belongs to the first class on the set Dn, if the right parts of this system do not depend on varibles x1,,xn, that is this system has the form x˙=C, where Cn, xD. We will assign to the second class the systems that are not included in the first class, for which the next condition is met “each of the function fi is increasing on the set Dn with respect to all variables on which it explicitly depends, with the exception of variable xi, i=1,,n”. Solutions of systems of the first and second classes have the property of monotonicity with respect to initial conditions.

We will assign to the third class the systems that are not included in the first class, for which the condition is met “each of the function fi is decreasing on the set Dn with respect to all variables on which it explicitly depends, with the exception of variable xi, i=1,,n”.

The conditions for the absence of periodic solutions for autonomous systems of the second order are obtained, complementing the known Bendikson conditions. It is proved that systems of two differential equations of all three specified classes cannot have periodic solutions

Russian Universities Reports. Mathematics. 2024;29(145):77-85
pages 77-85 views

On the solution of a mixed problem for the equation of vibrations of a moving viscoelastic web

Romanenkov A.M.

Abstract

A model initial boundary value problem of small transverse oscillations of a viscoelastic moving web with a hinged condition of fastening is considered. The vibrations of such a canvas are described by a linear differential equation of the 5th order in a spatial variable with constant coefficients. It is worth noting that the equation includes mixed derivatives of the desired function both with respect to the spatial variable and with respect to time. The paper describes a technique for constructing a solution in the form of a functional series based on a system of basis functions. To solve the initial-boundary value problem under the additional condition of conservation of energy, a condition is obtained that ensures the uniqueness of the solution. A special class of functions for which the uniqueness theorem holds is explicitly described.

Russian Universities Reports. Mathematics. 2024;29(145):86-97
pages 86-97 views

A new method of estimation of moduli of initial Taylor coefficients on the class of bounded non-vanishing functions

Stupin D.L.

Abstract

The task of obtaining the sharp estimate of the modulus of the n-th Taylor coefficient on the class B of bounded non-vanishing functions has been reduced to the problem of estimating a functional over the class of normalized bounded functions, which in turn has been reduced to the problem of finding the constrained maximum of a non-negative objective function of 2n3 real arguments with constraints of the inequality type, that allows us to apply the standard numerical methods of finding constrained extrema.

Analytical expressions of the first six objective functions have been obtained and their Lipschitz continuity has been proved. Based on the Lipschitz continuity of the objective function with number n, a method for the sharp estimating of the modulus of the n-th Taylor coefficient on the class B is rigorously proven. An algorithm of finding the global constrained maximum of the objective function is being discussed. The first step of this algorithm involves a brute-force search with a relatively large step. The second step of the algorithm uses a method for finding a local maximum with the initial points obtained at the previous step.

The results of the numerical calculations are presented graphically and confirm the Krzyz conjecture for n=1,,6. Based on these calculations, as well as on so-called asymptotic estimates, a sharp estimate of the moduli of the first six Taylor coefficients on the class B is derived. The obtained results are compared with previously known estimates of the moduli of initial Taylor coefficients on the class B and its subclasses Bt, t0. The extremals for  subclasses are discussed and the Krzyz hypothesis is updated for Bt subclasses. A brief historical overview of research of the estimations of moduli of initial Taylor coefficients on the class B is provided.

Russian Universities Reports. Mathematics. 2024;29(145):98-120
pages 98-120 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».