Регуляризация классических условий оптимальности в задачах оптимизации линейных систем вольтеррова типа с функциональными ограничениями

Обложка

Цитировать

Полный текст

Аннотация

Рассматривается регуляризация классических условий оптимальности (КУО) — принципа Лагранжа (ПЛ) и принципа максимума Понтрягина (ПМП) — в выпуклой задаче оптимального управлении с функциональными ограничениями типа равенства и неравенства. Управляемая система задается линейным функционально-операторным уравнением II рода общего вида в пространстве L2m, основной оператор правой части уравнения предполагается квазинильпотентным. Минимизируемый функционал задачи является выпуклым (возможно не сильно). Регуляризация КУО в неитерационной и итерационной формах основана на использовании соответственно методов двойственной регуляризации и итеративной двойственной регуляризации. При получении неитерационных регуляризованных КУО используются два параметра регуляризации, один из которых «отвечает» за регуляризацию двойственной задачи, другой же содержится в сильно выпуклом регуляризирующем тихоновском добавке к целевому функционалу исходной задачи, обеспечивая тем самым корректность задачи минимизации функции Лагранжа. Основное предназначение регуляризованных ПЛ и ПМП — устойчивое генерирование минимизирующих приближенных решений (МПР) в смысле Дж. Варги. Регуляризованные КУО: 1) формулируются как теоремы существования МПР в исходной задаче с одновременным конструктивным представлением конкретных МПР; 2) являются секвенциальными обобщениями классических аналогов — своих предельных вариантов, сохраняя общую структуру последних; 3) «преодолевают» свойства некорректности КУО и дают регуляризирующие алгоритмы для решения оптимизационных задач. Рассматриваются иллюстрирующие примеры конкретных задач оптимального управления, связанных с системой уравнений с запаздыванием и с интегродифференциальным уравнением типа уравнения переноса.

Об авторах

Владимир Иосифович Сумин

ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина»; ФГАОУ ВО «Нижегородский государственный университет им. Н.И. Лобачевского»

Автор, ответственный за переписку.
Email: v_sumin@mail.ru
ORCID iD: 0000-0002-7479-2181

доктор физико-математических наук, профессор

Россия, 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33; 603950, Российская Федерация, г. Нижний Новгород, пр-т Гагарина, 23

Михаил Иосифович Сумин

ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина»; ФГАОУ ВО «Нижегородский государственный университет им. Н.И. Лобачевского»

Email: m.sumin@mail.ru
ORCID iD: 0000-0002-3700-6428

доктор физико-математических наук, главный научный сотрудник; профессор

Россия, 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33; 603950, Российская Федерация, г. Нижний Новгород, пр-т Гагарина, 23

Список литературы

  1. В.М. Алексеев, В.М. Тихомиров, С.В. Фомин, Оптимальное управление, Наука, М., 1979.
  2. Е.Р. Аваков, Г.Г. Магарил-Ильяев, В.М. Тихомиров, “О принципе Лагранжа в задачах на экстремум при наличии ограничений”, Успехи матем. наук, 68:3(411) (2013), 5–38.
  3. А.В. Арутюнов, Г.Г. Магарил-Ильяев, В.М. Тихомиров, Принцип максимума Понтрягина. Доказательство и приложения, Факториал Пресс, М., 2006.
  4. Р.В. Гамкрелидзе, “История открытия принципа максимума Понтрягина”, Оптимальное управление и дифференциальные уравнения, Сборник статей. К 110-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 304, МИАН, М., 2019, 7–14.
  5. Некорректные задачи естествознания, ред. А.Н. Тихонов, А.В. Гончарский, Изд-во МГУ, М., 1987.
  6. Ф.П. Васильев, Методы оптимизации: В 2-х кн., МЦНМО, М., 2011.
  7. М.И. Сумин, “Регуляризованные принцип Лагранжа и принцип максимума Понтрягина в оптимальном управлении и обратных задачах”, Тр. Ин-та математики и механики УрО РАН, 25, 2019, 279–296.
  8. М.И. Сумин, “Принцип Лагранжа и его регуляризация как теоретическая основа устойчивого решения задач оптимального управления и обратных задач”, Вестник российских университетов. Математика, 26:134 (2021), 151–171.
  9. М.И. Сумин, “О некорректных задачах, экстремалях функционала Тихонова и регуляризованных принципах Лагранжа”, Вестник российских университетов. Математика, 27:137 (2022), 58–79.
  10. В.И. Сумин, М.И. Сумин, “Регуляризованные классические условия оптимальности в итерационной форме для выпуклых задач оптимизации распределенных систем вольтеррова типа”, Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 31:2 (2021), 265–284.
  11. В.И. Сумин, М.И. Сумин, “Регуляризация классических условий оптимальности в задачах оптимального управления линейными распределенными системами вольтеррова типа”, Журн. вычисл. матем. и матем. физ., 62:1 (2022), 45–70.
  12. В.И. Сумин, Функциональные вольтерровы уравнения в теории оптимального управления распределенными системами, Изд-во Нижегородского госуниверситета, Нижний Новгород, 1992.
  13. В.И. Сумин, A.В. Чернов, “Операторы в пространствах измеримых функций: вольтерровость и квазинильпотентность”, Дифференц. ур-ния, 34:10 (1998), 1402–1411.
  14. И.Ц. Гохберг, М.Г. Крейн, Теория вольтерровых операторов в гильбертовом пространстве и ее приложения, Наука, М., 1967.
  15. В.И. Сумин, “Функционально-операторные вольтерровы уравнения в теории оптимального управления распределенными системами”, Докл. АН СССР, 305:5 (1989), 1056–1059.
  16. В.И. Сумин, “Управляемые вольтерровы функциональные уравнения и принцип сжимающих отображений”, Тр. Ин-та математики и механики УрО РАН, 25:1 (2019), 262–278.
  17. М.И. Сумин, “Регуляризованная параметрическая теорема Куна–Таккера в гильбертовом пространстве”, Журн. вычисл. матем. и матем. физ., 51:9 (2011), 1594–1615.
  18. М.И. Сумин, “Устойчивое секвенциальное выпуклое программирование в гильбертовом пространстве и его приложение к решению неустойчивых задач”, Журн. вычисл. матем. и матем. физ., 54:1 (2014), 25–49.
  19. Дж. Варга, Оптимальное управление дифференциальными и функциональными уравнениями, Наука, М., 1977.
  20. М.И. Сумин, Некорректные задачи и методы их решения. Материалы к лекциям для студентов старших курсов, Изд-во Нижегородского госуниверситета, Нижний Новгород, 2009.
  21. М.И. Сумин, “Регуляризация в линейно-выпуклой задаче математического программирования на основе теории двойственности”, Журн. вычисл. матем. и матем. физ., 47:4 (2007), 602–625.
  22. М.И. Сумин, “О регуляризации классических условий оптимальности в выпуклых задачах оптимального управления”, Тр. Ин-та математики и механики УрО РАН, 26:2 (2020), 252–269.
  23. А.Б. Бакушинский, А.В. Гончарский, Некорректные задачи. Численные методы и приложения, Изд-во Моск. ун-та, М., 1989.
  24. А.В. Дмитрук, Выпуклый анализ. Элементарный вводный курс: Учебное пособие, Издательский отдел факультета ВМиК МГУ; МАКС Пресс, М., 2012.
  25. K. Jorgens, “An asymptotic expansion in the theory of neutron transport”, Comm. Pure Appl. Math., 11:2 (1958), 219–242.
  26. С.Ф. Морозов, “Нестационарное интегродифференциальное уравнение переноса”, Изв. вузов. Матем., 1969, №1, 26–31.
  27. Ю.А. Кузнецов, С.Ф. Морозов, “Корректность постановки смешанной задачи для нестационарного уравнения переноса”, Дифференц. ур-ния, 8:9 (1972), 1639–1648.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».