Estimates of the phase trajectories of controlled systems with multi-valued impulses

Cover Page

Cite item

Full Text

Abstract

We consider a controlled system for the differential equation x˙(t)=f(t,x(t),u(t),ξ),  t[a,b],  x(a)=x, \dot{x}(t)=f(t,x(t),u(t), \xi), \ \ t \in [a,b] , \ \ x(a)=\mathrm{x}, where the parameter $\xi$ is an element of some given metric space, the control $u$ satisfies the constraint u(t)U(t,x(t),ξ),  t[a,b]. u(t)\in U(t,x(t), \xi), \ \ t \in [a,b]. It is assumed that at each given moment of time $t_k\in (a,b)$ a solution $x:[a,b]\to \mathbb{R}^n$ (a phase trajectory) suffers  discontinuity, the magnitude of which belongs to a non-empty compact set $I_k( x(t_k))\subset \mathbb{R}^n,$ and is an  absolutely continuous function on intervals $(t_{k-1},t_k]$. The  control function is assumed to be measurable. A theorem on estimating the distance from a given piece-wise absolutely continuous function $y:[a,b]\to \mathbb{R}^n$  to the set of phase trajectories for all initial values from a neighborhood of a vector $x_0$ and for all parameters from a neighborhood of a point $\xi_0$ is proven. It is assumed that for the given initial value $\mathrm{x}=x_0$ of the solution and for the value $\xi=\xi_0$ of the parameter, the set of phase trajectories is a priori limited. The proven theorem allows, by selecting the function $y$, to obtain an approximate solution of the controlled system, as well as an estimate of the error of such solution.

 

About the authors

Olga V. Filippova

Derzhavin Tambov State University; V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences

Author for correspondence.
Email: philippova.olga@rambler.ru
ORCID iD: 0000-0003-1612-9880

Candidate of Physics and Mathematics, Associate Professor of the Functional Analysis Department

Russian Federation, 33 International St., Tambov 392036, Russian Federation; 65 Profsoyuznaya St., Moscow 117997, Russian Federation

References

  1. A. F. Filippov, “On some questions of the theory of optimal controll”, Moscow Universities Reports, 1959, №2, 25–32 (In Russian).
  2. T. Wazewski, “Systemes de commande et equations au contingent”, Bull. Acad. Polon. Sci., Ser. Math. Astr., Phys., 9:3 (1961), 151–155.
  3. T. Wazewski, “Sur une generalisation de la notion des solution d’une equations au contingent”, Bull. Acad. Polon. Sci., Ser. Math., Astr., Phys., 10:1 (1962), 11–15.
  4. S. V. Emelyanov, A. V. Ilyin, S. K. Korovin, V. V. Fomichev, A. S. Fursov, Mathematical Methods of Control Theory. Problems of Stability, Controllability and Observability, 1st. ed., FIZMATLIT Publ., Moscow, 2014 (In Russian).
  5. O. V. Filippova, “Differential equations with a parameter, with multivalued impulses and with control”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 25:132 (2020), 441–447 (In Russian).
  6. P. I. Chugunov, “Properties of solutions for differential switching and controlled systems”, Applied Mathematics and Application Packages, 1980, 155–179 (In Russian).
  7. V. I. Blagodatskikh, A. F. Filippov, “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169 (1986), 199–259.
  8. Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovsky, Introduction to the Theory of Multivalued Mappings and Differential Inclusions, 2nd ed., Book House “LIBROKOM”, Moscow, 2016.
  9. A. I. Bulgakov, O. V. Filippova, “The functional differential inclusions with impulses and with the right-hand side not necessarily convex-valued with respect to switching”, Izv. IMI UdGU, 2014, №1(43), 3–48 (In Russian).
  10. A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, I, II, Dover Publications, Mineola, New York, 1957, 1961.
  11. A. V. Arutyunov, Lectures on Convex and Multivalued Analysis, FIZMATLIT Publ., Moscow, 2014 (In Russian).
  12. A. I. Bulgakov, E. V. Korchagina, O. V. Filippova, “Functional-differential inclusions with impulses. Part I–VI”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 14:6 (2009), 1275–1313 (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).