ON CONNECTION BETWEEN CONTINUOUS AND DISCONTINUOUS NEURAL FIELD MODELS WITH MICROSTRUCTURE I. GENERAL THEORY


Cite item

Full Text

Abstract

We suggest a method allowing to investigate existence and the measure of proximity between the stationary solutions to continuous and discontinuous neural fields with microstructure. The present part involves a theorem on solvability of such equations based on topological degree theory, and a theorem on continuous dependence of the solutions under the transition from continuous to discontinuous activation function using compactness in a special topology.

Full Text

Неокортекс человека - это верхний слой больших полушарий головного мозга, толщиной 2-4 мм, содержащий около 109 нейронов, имеющих 60 × 1012 связей [1].
×

About the authors

Evgenii Olegovich Burlakov

Tambov State University named after G.R. Derzhavin

Email: eb_@bk.ru
PhD, Researcher at the Research and Educational Centre “Fundamental Mathematical Research” 33 Internatsionalnaya St., Tambov 392000, Russian Federation

Margarita Aleksandrovna Nasonkina

Tambov State University named after G.R. Derzhavin

Email: nasonkina.margo@gmail.com
Master’s Degree Student on Training Direction “Mathematics” 33 Internatsionalnaya St., Tambov 392000, Russian Federation

References

  1. The Synaptic Organization of the Brain / ed. by G.M. Shepherd. Oxford: Oxford University Press, 2004. 719 p.
  2. Lui J.H., Hansen D.V., Kriegstein A.R. Development and evolution of the human neocortex // Cell. 2011. Vol. 146. Iss. 1. P. 18-36.
  3. Swenson R.S. Review of clinical and functional neuroscience // Educational Review Manual in Neurology / ed. by G.L. Holmes. N. Y.: Castle Connolly Graduate Medical Publishing, 2006.
  4. Graben P.B., Kurths J. Simulating global properties of electroencephalograms with minimal random neural networks // Neurocomp. 2008. Vol. 71. Iss. 4. P. 999-1007.
  5. Hopfield J.J. Neural networks and physical systems with emergent collective computational properties // Proc. Nat. Acad. Sci. 1982. Vol. 79. P. 2554-2558.
  6. Van den Driesche P., Zou X. Global attractivity in delayed Hopfield neural network models // SIAM J. Appl. Math. 1998. Vol. 58. P. 1878-1890.
  7. Burlakov E., Zhukovskiy E., Ponosov A., Wyller J. Existence, uniqueness and continuous dependence on parameters of solutions to neural field equations // Mem. Diff. Eq. Math. Phys. 2015. Vol. 65. P. 35-55.
  8. Amari S. Dynamics of pattern formation in lateral-inhibition type neural fields // Biol. Cybern. 1977. Vol. 27. P. 77-87.
  9. Potthast R., Graben P.B. Existence and properties of solutions for neural field equations // Math. Methods Appl. Sci. 2010. Vol. 8. P. 935-949.
  10. Faye G., Faugeras O. Some theoretical and numerical results for delayed neural field equations // Physica D. 2010. Vol. 239. P. 561-578.
  11. Laing C.R., Troy W. Two-bump solutions of Amari-type models of neuronal pattern formation // Physica D. 2003. Vol. 178. P. 190-218.
  12. Owen M.R., Laing C.R., Coombes S. Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities // New J. Phys. 2007. Vol. 9. P. 378.
  13. Blomquist P., Wyller J., Einevoll G.T. Localized activity patterns in two-population neuronal networks // Physica D. 2005. Vol. 206. P. 180-212.
  14. Oleynik A., Ponosov A., Wyller J. On the properties of nonlinear nonlocal operators arising in neural field models // J. Math. Anal. Appl. 2013. Vol. 398. P. 335-351.
  15. Pinto D., Ermentrout G.B. Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses // SIAM J. Appl. Math. 2001. Vol. 62. P. 226-243.
  16. Coombes S., Owen M.R. Evans functions for integral neural field equations with Heaviside firing rate function // SIAM J. Appl. Dyn. Syst. 2004. Vol. 4. P. 574-600.
  17. Folias S.E., Bressloff P.C. Breathing pulses in an excitatory neural network // SIAM J. Appl. Dyn. Syst. 2004. Vol. 3. P. 378-407.
  18. Guo Y., Chow C.C. Existence and stability of standing pulses in neural networks: II. Stability // SIAM J. Appl. Dyn. Syst. 2005. Vol. 4. P. 249-281.
  19. Taylor J.G. Neural bubble dynamics in two dimensions: foundations // Biol. Cybern. 1999. Vol. 80. P. 393-409.
  20. Laing C.R., Troy W.C. PDE methods for nonlocal models // SIAM J. Appl. Dyn. Syst. 2003. Vol. 2. P. 487-516.
  21. Werner H., Richter T. Circular stationary solutions in two-dimensional neural fields // Biol. Cybern. 2001. Vol. 85. P. 211-217.
  22. Coombes S., Laing C., Schmidt H., Svanstedt N., Wyller J. Waves in random neural media // Discr. Cont. Dyn. Syst., Series A. 2011. Vol. 32. P. 2951-2970.
  23. Svanstedt N., Woukeng J.L. Homogenization of a Wilson-Cowan model for neural fields // Nonlin. Anal. Real World Appl. 2013. Vol. 14. Iss. 3. P. 1705-1715.
  24. Svanstedt N., Wyller J., Malyutina E. A one-population Amari model with periodic microstructure // Nonlinearity. 2014. Vol. 27. P. 1394-1417.
  25. Malyutina E., Wyller J., Ponosov A. Two bump solutions of a homogenized Amari model with periodic microstructure // Physica D. 2014. Vol. 271. P. 19-31.
  26. Malyutina E., Ponosov A., Wyller J. Numerical analysis of bump solutions for neural field equations with periodic microstructure // Applied Mathematics and Computation. 2015. Vol. 260. P. 370-384.
  27. Hutson V., Pym J.S., Cloud M.J. Applications of Functional Analysis and Operator Theory. Amsterdam: Elsevier Science, 2005. 432 p.
  28. Kolmogorov A.N., Fomin S.V. Elements of the Theory of Functions and Functional Analysis. Vol. 1. N. Y.: Dover Publications Inc., 1961. 128 p.
  29. Burlakov E., Wyller J., Ponosov A. Two-dimensional Amari neural field model with periodic microstructure: Rotationally symmetric bump solutions // Commun. Nonl. Sci. Num. Simul. 2016. Vol. 32. P. 81-88.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).