К ТЕОРЕМЕ АРУТЮНОВА О ТОЧКАХ СОВПАДЕНИЯ ДВУХ ОТОБРАЖЕНИЙ МЕТРИЧЕСКИХ ПРОСТРАНСТВ


Цитировать

Полный текст

Аннотация

В теореме Арутюнова утверждается, что действующие из полного метрического пространства X , ρ X в метрическое пространство Y , ρ Y отображения ψ, φ, одно из которых является накрывающим, а второе - β -липшицевым, α> β, имеют точку совпадения, т. е. существует решение уравнения ψx = φx . Показано, что это утверждение остается справедливым и в случае, если пространство Y не является метрическим, достаточно, чтобы функция ρ Y :Y 2 →R + удовлетворяла только аксиоме тождества. Функция ρ Y может не быть симметрической и не отвечать неравенству треугольника, более того, не обязана удовлетворять неравенству треугольника (т. е. возможно, что пространство Y даже не -квазиметрическое).

Полный текст

А.В. Арутюровым в [1] получены условия существования и оценки точек совпадения отображений ψ, φ , действующих из метрического пространства X в метрическое пространство Y .
×

Об авторах

Вассим Мерчела

ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина»

Email: merchela.wassim@gmail.com
аспирант, кафедра функционального анализа 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33

Список литературы

  1. Арутюнов А.В. Накрывающие отображения в метрических пространствах и неподвижные точки // Доклады АН. 2007. Т. 416. № 2. С. 151-155.
  2. Аваков Е.Р., Арутюнов А.В., Жуковский Е.С. Накрывающие отображения и их приложения к дифференциальным уравнениям, не разрешенным относительно производной // Дифференциальные уравнения. 2009. Т. 45. № 5. С. 613-634.
  3. Арутюнов А.В., Жуковский Е.С., Жуковский С.Е. О корректности дифференциальных уравнений, не разрешенных относительно производной // Дифференциальные уравнения. 2011. Т. 47. № 11. С. 1523-1537.
  4. Жуковский Е.С., Плужникова Е.А. Накрывающие отображения в произведении метрических пространств и краевые задачи для дифференциальных уравнений, не разрешенных относительно производной // Дифференциальные уравнения. 2013. Т. 49. № 4. С. 439-455.
  5. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Covering mappings and well-posedness of nonlinear Volterra equations // Nonlinear Analysis: Theory, Methods and Applications. 2012. Vol. 75. № 3. P. 1026-1044.
  6. Жуковский Е.С., Плужникова Е.А. Об управлении объектами, движение которых описывается неявными нелинейными дифференциальными уравнениями // Автоматика и телемеханика. 2015. № 1. С. 31-56.
  7. Арутюнов А.В., Грешнов А.В. Теория (q1, q2)-квазиметрических пространств и точки совпадения // Доклады РАН. 2016. Т. 469. № 5. С. 527-531.
  8. Arutyunov A.V., Greshnov A.V., Lokoutsievskii L.V., Storozhuk K.V. Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics // Topology Appl. 2017. Vol. 221. P. 178-194.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).