ЛИПШИЦЕВОСТЬ МЕРЫ-МНОЖИТЕЛЯ ЛАГРАНЖА ИЗ ПРИНЦИПА МАКСИМУМА ДЛЯ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ С ФАЗОВЫМИ ОГРАНИЧЕНИЯМИ ТИПА РАВЕНСТВ И НЕРАВЕНСТВ

Обложка

Цитировать

Полный текст

Аннотация

Изучаются свойства регулярных экстремалей в задачах оптимального управления с фазовыми ограничениями типа равенств и неравенств. Доказывается, что в условиях регулярности усиленное условие Лежандра влечет липшицевость меры-множителя Лагранжа из принципа максимума.

Об авторах

Анна Викторовна Горбачева

Российский университет дружбы народов

Email: avgorbacheva@inbox.ru
преподаватель кафедры прикладной математики г. Москва, Российская Федерация

Дмитрий Юрьевич Карамзин

Вычислительный центр им. А.А. Дородницына Федерального исследовательского центра «Информатика и управление» Российской академии наук

Email: dmitry_karamzin@mail.ru
доктор физико-математических наук, ведущий научный сотрудник г. Москва, Российская Федерация

Список литературы

  1. Горбачева А.В., Карамзин Д.Ю. Уточнение условий оптимальности в задачах управления с фазовыми ограничениями типа равенств и неравенств // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2016. Т. 21. Вып. 1. С. 40-55.Горбачева А.В. Непрерывность меры-множителя Лагранжа из принципа максимума для задачи оптимального управления с фазовыми ограничениями типа равенств и неравенств в условиях слабой регулярности экстремального процесса // Вестник Тамбовского университета. Серия Естественные и технические науки. Тамбов, 2016. Т. 21. Вып. 1. С. 28-39.Arutyunov A.V., Karamzin D.Yu. On some continuity properties of the measure Lagrange multiplier from the maximum principle for state constrained problems // SIAM J. Control Optim. 2015. V. 53. № 4. P. 2514-2540.Дубовицкий А.Я., Милютин А.А. Необходимые условия слабого экстремума в задачах оптимального управления со смешанными ограничениями типа неравенств // Журнал вычислительной математики и математической физики. 1968. Т. 8. № 4. С. 725-779.Натансон И.П. Теория функций вещественной переменной. М.: Наука, 1974.Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М.: Наука, 1979.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).