Рассматривается задача о точках совпадения двух отображений ψ, φ , действующих из метрического пространства (X, ρ) в пространство (Y, d), в котором расстояние d обладает лишь одним из свойств метрики: d( y1 , y2 )=0⇔ y1 = y2 , и не предполагается ни симметричным, ни удовлетворяющим неравенству треугольника. Исследуется вопрос о корректности уравнения ψx =φ(x), определяющего точку совпадения. Показано, что если x=ξ - решение этого уравнения, то для любой последовательности α i -накрывающих отображений ψ i :X→Y и любой последовательности β i -липшицевых отображений φ i :X→Y, α i > β i ≥0, в случае сходимости d( φ i (ξ), ψ i (ξ))→0 уравнение ψ i (x)= φ i (x) при любом i обладает решением x= ξ i таким, что ρ( ξ i ,ξ)→0 . Далее в статье исследуется зависимость от параметра t - элемента топологического пространства T множества Coin(t) точек совпадения отображений ψ(·, t),φ(·, t):X→Y. В предположении, что первое из этих отображений является -накрывающим, второе - β -липшицевым, получено утверждение о полунепрерывности сверху, полунепрерывности снизу и непрерывности многозначного отображения Coin:T⇒ X.