Оценка суммарного дохода с учетом дисконтирования для вероятностных моделей динамики популяций

Обложка

Цитировать

Полный текст

Аннотация

Рассматриваются модели однородных и структурированных популяций, заданные дифференциальными уравнениями, зависящими от случайных параметров.  Популяция называется однородной, если она состоит только из одного вида животных или растений, и структурированной, если она содержит $n\geqslant 2$ различных видов или возрастных классов. Предполагаем, что при отсутствии эксплуатации динамика популяции  задана системой дифференциальных уравнений
x˙=g(x),xR+nxRn:x10,,xn0.
В моменты времени $\tau_{k}=kd,$ где $d>0,$ $k=1,2,\ldots,$ из этой популяции извлекаются случайные доли ресурса $\omega_{k}^i,$ $i=1,\ldots,n.$  Если $\omega_{k}^i$ оказывается больше некоторого значения $u_{k}^i\in[0,1),$ то сбор ресурса  $i$-го вида в момент $\tau_{k}$ прекращается, и доля извлеченного ресурса получается равной  $\ell_{k}^i=\min(\omega_{k}^i,u_{k}^i).$ Пусть $C^{i}\geqslant 0$~--- стоимость ресурса $i$-го вида, $X_k^{i}=x^{i}(kd-0)$~--- количество ресурса $i$-го вида в момент времени $\tau_k$ до сбора; тогда величина дохода в данный момент равна $Z_k\doteq\displaystyle\sum_{i=1}^n{C^{i}X_k^{i}\ell_{k}^i}.$ Исследуются свойства характеристики суммарного дохода, которая определяется как сумма ряда из величин дохода в момент времени $\tau_k$ с учетом показателя дисконтирования $\alpha>0:$
Hα(l¯,x0)=k=1Zke-αk=k=1e-αki=1nCiXkilki,
где $\overline{\ell}\doteq(\ell_{1},\ldots,\ell_{k},\ldots),$ $x_0$ начальный размер популяции. Значение показателя $\alpha$ указывает на то, что стоимость позднее получаемого дохода снижается. Получены оценки суммарного дохода с учетом дисконтирования, выполненные с вероятностью единица.

Об авторах

Анастасия Андреевна Базулкина

ФГБОУ ВО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Автор, ответственный за переписку.
Email: hirasawa33rus@gmail.com
ORCID iD: 0009-0007-5283-5295

аспирант, кафедра функционального анализа и его приложений

Россия, 600000, Российская Федерация, г. Владимир, ул. Горького, 87

Список литературы

  1. D.D. Bainov, “Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population”, Applied Mathematics and Computation, 39:1 (1990), 37–48.
  2. Г.П. Неверова, О.Л. Жданова, Е.Я. Фрисман, “Динамические режимы структурированного сообщества хищник-жертва и их изменение в результате антропогенного изъятия особей”, Математическая биология и биоинформатика, 15:1 (2020), 73–92.
  3. А.И. Абакумов, Ю.Г. Израильский, “Эффекты промыслового воздействия на рыбную популяцию”, Математическая биология и биоинформатика, 11:2 (2016), 191–204.
  4. Г.П. Неверова, А.И. Абакумов, Е.Я. Фрисман, “Влияние промыслового изъятия на режимы динамики лимитированной популяции: результаты моделирования и численного исследования”, Математическая биология и биоинформатика, 11:1 (2016), 1–13.
  5. А.О. Беляков, А.А. Давыдов, “Оптимизация эффективности циклического использования возобновляемого ресурса”, Труды Института математики и механики УрО РАН, 22, 2016, 38–46.
  6. А.А. Давыдов, “Существование оптимальных стационарных состояний эксплуатируемых популяций с диффузией”, Избранные вопросы математики и механики, Сборник статей. К 70-летию со дня рождения академика Валерия Васильевича Козлова, Труды МИАН, 310, МИАН, М., 2020, 135–142.
  7. А.В. Егорова, Л.И. Родина, “Об оптимальной добыче возобновляемого ресурса из структурированной популяции”, Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 29:4 (2019), 501–517.
  8. А.В. Егорова, “Оптимизация дисконтированного дохода для структурированной популяции, подверженной промыслу”, Вестник российских университетов. Математика, 26:133 (2021), 15–25.
  9. Ю.В. Мастерков, Л.И. Родина, “Оценка средней временной выгоды для стохастической структурированной популяции”, Известия Института математики и информатики Удмуртского государственного университета, 56 (2020), 41–49.
  10. Л.И. Родина, “Оптимизация средней временной выгоды для вероятностной модели популяции, подверженной промыслу”, Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 28:1 (2018), 48–58.
  11. L.I. Rodina, A.H. Hammadi, “Optimization problems for models of harvesting a renewable resourse”, Journal of Mathematical Sciences, 25:1 (2020), 113–122.
  12. О.А. Кузенков, Е.А. Рябова, Математическое моделирование процессов отбора, Издательство ННГУ, Н. Новгород, 2007, 324 с.
  13. А.Н. Ширяев, Вероятность-1, Наука, М., 1989, 580 с.
  14. М.С. Волдеаб, “Свойства средней временной выгоды для вероятностных моделей эксплуатируемых популяций”, Вестник российских университетов. Математика, 28:141 (2023), 26–38.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».