Kalman Filter for a Particular Class of Dynamic Object Images
- Authors: Soifer V.A1, Fursov V.A1, Kharitonov S.I1
-
Affiliations:
- S.P. Korolev Samara National Research University
- Issue: Vol 23, No 4 (2024)
- Pages: 953-968
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/265761
- DOI: https://doi.org/10.15622/ia.23.4.1
- ID: 265761
Cite item
Full Text
Abstract
Keywords
About the authors
V. A Soifer
S.P. Korolev Samara National Research University
Email: soifer@ssau.ru
Moscow Hgw. 34
V. A Fursov
S.P. Korolev Samara National Research University
Email: fursov@ssau.ru
Moscow Hgw. 34
S. I Kharitonov
S.P. Korolev Samara National Research University
Email: prognoz2007@gmail.com
Moscow Hgw. 34
References
- Laplante P.A., Neill C.J. A class of Kalman filters for real-time image processing // Proceedings of the Real-Time Imaging VII conference. Santa Clara: SPIE, 2003. pp. 22–29.
- Schneider F., Easterbrook S.M., Callahan J.R., Holzmann G.J. Validating requirements for fault tolerant systems using model checking // Proceedings of the Third IEEE International Symposium on Requirements Engineering: RE'98. 1998. pp. 4–13.
- Biemond J., Riesek J., Gerbrands J. A fast Kalman filter for images degraded by both blur and noise // IEEE Transactions on Acoustics, Speech, and Signal Processing. 1983. vol. 31. no. 5. pp. 1248–1256.
- Xie X., Sudhakar R., Zhuang H. Real-time eye feature tracking from a video image sequence using Kalman Filter // IEEE Transactions on Systems, Man, and Cybernetics 1995. vol. 25. no. 12. pp. 1568–1577.
- Lippiello V., Siciliano B., Villani L. A new method of image features pre-selection for real-time pose estimation based on Kalman filter // Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2002. vol. 1. pp. 372–377.
- Горбачев В.А., Калугин В.Ф. Разработка алгоритма многообъектного трекинга с необучаемыми признаками сопоставления объектов // Компьютерная оптика. 2023. Т. 47. № 6. С. 1002–1010. doi: 10.18287/2412-6179-CO-1275.
- Cao K., Li J., Song R., Li Y. HELM-AD: Hierarchical and efficient attitude determination framework with adaptive error compensation module based on ELM network // ISPRS Journal of Photogrammetry and Remote Sensing. 2023. vol. 195. pp. 418–431. doi: 10.1016/j.isprsjprs.2022.12.010.
- Al Bitar N., Gavrilov A. A new method for compensating the errors of integrated navigation systems using artificial neural networks // Measurement. 2021. vol. 168. no. 108391.
- Chen C., Xiong R., Yang R., Shen W., Sun F. State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter. Journal of Cleaner Production. 2019. vol. 234. pp. 1153–1164. doi: 10.1016/j.jclepro.2019.06.273.
- Cui Z., Kang L., Li L., Wang L., Wang K. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF // Energy. 2022. vol. 259. no. 124933.
- Астафьев А.В., Титов А.В., Жизняков А.Л., Демидов А.А. Метод позиционирования мобильного устройства с использованием сенсорной сети BLE-маяков, аппроксимации значений уровней сигналов RSSI и искусственных нейронных сетей // Компьютерная оптика. 2021. Т. 45. № 2. С. 277–285. doi: 10.18287/2412-6179-CO-826.
- Baoa T., Zhao Y., Zaidia S.A.R., Xiea S., Yang P., Zhang Z.. A deep Kalman filter network for hand kinematics estimation using sEMG // Pattern Recognition Letters. 2021. vol. 143. pp. 88–94. doi: 10.1016/j.patrec.2021.01.001.
- Chen K., Yu J. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach // Applied Energy. 2014. vol. 113. pp. 690–705. doi: 10.1016/j.apenergy.2013.08.025.
- Din F. Combined state and least squares parameter estimation algorithms for dynamic systems // Applied Mathematical Modelling. 2014. vol. 38. no. 1. pp. 403–412. doi: 10.1016/j.apm.2013.06.007.
- Ding F. State filtering and parameter estimation for state space systems with scarce measurements // Signal Processing. 2014. vol. 104. pp. 369–380. doi: 10.1016/j.sigpro.2014.03.031.
- Zhu X.-Z., Cabecinhas D., Xie W., Casau P., Silvestre C., Batista P., Oliveira P. Kalman–Bucy filter-based tracking controller design and experimental validations for a quadcopter with parametric uncertainties and disturbances // International Journal of Systems Science. 2023. vol. 54(1). pp. 17–41. doi: 10.1080/00207721.2022.2096939.
- Ionov I., Boldyrikhin N., Cherckesova L., Saveliev V. Filtering grayscale images using the Kalman filter // E3S Web of Conferences. 2022. vol. 363. doi: 10.1051/e3sconf/202236303004.
- Jwo D.-J., Biswal A. Implementation and Performance Analysis of Kalman Filters with Consistency Validation // Mathematics. 2023. vol. 11(3). no. 521. doi: 10.3390/math11030521.
- Piovoso M., Laplante P.A. Kalman filter recipes for real-time image processing // Real-Time Imaging. 2003. vol. 9. no. 6. pp. 433–439. doi: 10.1016/j.rti.2003.09.005.
- Василюк Н.Н. Коррекция вращательного смаза в изображениях звёзд, наблюдаемых астроинерциальным датчиком ориентации на фоне дневного неба // Компьютерная оптика. 2023. Т. 47. № 1. С. 79–91. doi: 10.18287/2412-6179-CO-1141.
Supplementary files
