Бесстрессовый алгоритм управления беговыми платформами на основе нейросетевых технологий
- Авторы: Обухов А.Д1, Дедов Д.Л1, Теселкин Д.В1, Волков А.А1, Назарова А.О1
-
Учреждения:
- Тамбовский государственный технический университет
- Выпуск: Том 23, № 3 (2024)
- Страницы: 909-935
- Раздел: Робототехника, автоматизация и системы управления
- URL: https://journal-vniispk.ru/2713-3192/article/view/265782
- DOI: https://doi.org/10.15622/ia.23.3.10
- ID: 265782
Цитировать
Полный текст
Аннотация
Об авторах
А. Д Обухов
Тамбовский государственный технический университет
Email: obuhov.art@gmail.com
улица Советская 106
Д. Л Дедов
Тамбовский государственный технический университет
Email: hammer68@mail.ru
улица Советская 106
Д. В Теселкин
Тамбовский государственный технический университет
Email: dteselk@mail.ru
улица Советская 106
А. А Волков
Тамбовский государственный технический университет
Email: didim@eclabs.ru
улица Советская 106
А. О Назарова
Тамбовский государственный технический университет
Email: nazarova.al.ol@yandex.ru
улица Советская 106
Список литературы
- Сиухин А.А., Карпушкин С.В. Определение шаблона движения пользователя на тренажере // Вестник Воронежского государственного технического университета. 2022. Т. 18. № 5. С. 48–55.
- Kempski K.M., Ray N.T., Knarr B.A., Higginson J.S. Dynamic structure of variability in joint angles and center of mass position during user-driven treadmill walking // Gait & posture. 2019. vol. 71. pp. 241–244.
- Donlin M.C., Ray N.T., Higginson J.S. User-driven treadmill walking promotes healthy step width after stroke // Gait & posture. 2021. vol. 86. pp. 256–259.
- Wehden L.O., Reer F., Janzik R., Tang W.Y., Quandt T. The slippery path to total presence: How omnidirectional virtual reality treadmills influence the gaming experience // Media and Communication. 2021. vol. 9. no. 1. pp. 5–16.
- Nath A.S. Eustress and distress-a stimulant and deterrent to health and performance // Journal of Research Administration. 2023. vol. 5. no. 2. pp. 5106–5121.
- Hedjazi N., Benali A., Bouzit M., Dibi Z. An omnidirectional platform design: application to posture analysis // XIV Mediterranean Conference on Medical and Biological Engineering and Computing (IFMBE’2016). 2016. pp. 602–607.
- Lichtenstein L., Barabas J., Woods R.L., Peli E.A feedback-controlled interface for treadmill locomotion in virtual environments // ACM Transactions on Applied Perception (TAP). 2007. vol. 4. no. 1.
- De Luca A., Mattone R., Giordano P.R., Ulbrich H., Schwaiger M., Van den Bergh M., Koller-Meier E., Van Gool L. Motion control of the cybercarpet platform // IEEE Transactions on Control Systems Technology. 2012. рp. 410–427. doi: 10.1109/TCST.2012.2185051.
- Pyo S.H., Lee H., Yoon J. Development of a novel omnidirectional treadmill-based locomotion interface device with running capability // Applied Sciences. 2021. vol. 11(9). no. 4223.
- Pyo S., Lee H., Yoon J. A Sensitive and Accurate Walking Speed Prediction Method Using Ankle Torque Estimation for a User-Driven Treadmill Interface // IEEE Access. 2022. vol. 10. pp. 102440–102450.
- Lam W.W., Tang Y.M., Fong K.N. A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation // Journal of NeuroEngineering and Rehabilitation. 2023. vol. 20. no. 1. pp. 1–26.
- Souman J.L., Giordano P.R., Frissen I., Luca A.D., Ernst M.O. Making virtual walking real: Perceptual evaluation of a new treadmill control algorithm // ACM Transactions on Applied Perception (TAP). 2010. vol. 7. no. 2. pp. 1–14.
- Kikuchi T., Sakai K., Ishiya K. Gait Analysis with Automatic Speed-Controlled Treadmill // Journal of Robotics and Mechatronics. 2015. vol. 27. no. 5. pp. 528–534.
- Auralius M., Yoon J.W. An automatic speed control system of a treadmill with ultrasonic sensors // Journal of Institute of Control, Robotics and Systems. 2011. vol. 17. no. 5. pp. 505–511.
- Borges M., Symington A., Coltin B., Smith T., Ventura, R. Analysis and accuracy improvement // IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’2018). 2018. pp. 2610–2615.
- Obukhov A., Dedov D., Volkov A., Teselkin D. Modeling of Nonlinear Dynamic Processes of Human Movement in Virtual Reality Based on Digital Shadows // Computation. 2023. vol. 11(5). no. 85.
- Obukhov A., Volkov A., Pchelintsev A., Nazarova A., Teselkin D., Surkova E., Fedorchuk I. Examination of the Accuracy of Movement Tracking Systems for Monitoring Exercise for Musculoskeletal Rehabilitation // Sensors. 2023. vol. 23(19). no. 8058.
- Chung J.L., Ong L.Y., Leow M.C. Comparative analysis of skeleton-based human pose estimation // Future Internet. 2022. vol. 14(12). no. 380.
- Singhal R., Modi H., Srihari S., Gandhi A., Prakash C.O., Eswaran S. Body Posture Correction and Hand Gesture Detection Using Federated Learning and Mediapipe // 2nd International Conference for Innovation in Technology (INOCON’2023). 2023. pp. 1–6.
- Obukhov A.D., Krasnyanskiy M.N., Dedov D.L., Vostrikova V.V., Teselkin D.V., Surkova E.O. Control of adaptive running platform based on machine vision technologies and neural networks // Neural Computing and Applications. 2022. vol. 34. no. 15. pp. 12919–12946.
- Обухов А.Д., Назарова А.О. Метод управления на основе технологий компьютерного зрения и машинного обучения для адаптивных систем // Мехатроника, автоматизация, управление. 2023. Т. 24. № 1. С. 14–23.
- Surkova E., Teselkin D., Nazarova A., Arkhipov A. Structural and functional models of adaptive motion control system in virtual reality // AIP Conference Proceedings. 2023. vol. 2910. no. 1.
- Su B., Smith C., Gutierrez Farewik E. Gait phase recognition using deep convolutional neural network with inertial measurement units // Biosensors. 2020. vol. 10(9). no. 109.
- Li Y., Zhang S., Wang Z., Yang S., Yang W., Xia S.T., Zhou E. Tokenpose: Learning keypoint tokens for human pose estimation // Proceedings of the IEEE/CVF International conference on computer vision (ICCVW’2021). 2021. pp. 11313–11322.
- Yacchirema D., de Puga J.S., Palau C., Esteve M. Fall detection system for elderly people using IoT and ensemble machine learning algorithm // Personal and Ubiquitous Computing. 2019. vol. 23. pp. 801–817.
- Bartol K., Bojanic D., Petkovic T., Peharec S., Pribanicc T. Linear regression vs. deep learning: A simple yet effective baseline for human body measurement // Sensors. 2022. vol. 22(5). no. 1885.
- Turgeon S., Lanovaz M.J. Tutorial: Applying machine learning in behavioral research // Perspectives on Behavior Science. 2020. vol. 43. no. 4. pp. 697–723.
- Gupta A., Gupta K., Gupta K., Gupta K. Human Activity Recognition Using Pose Estimation and Machine Learning Algorithm // ISIC. 2021. vol. 21. pp. 25–27.
- Pham H.H., Salmane H., Khoudour L., Crouzil A., Velastin S.A., Zegers P. A unified deep framework for joint 3d pose estimation and action recognition from a single RGB camera // Sensors. 2020. vol. 20(7). no. 1825.
Дополнительные файлы
