Algorithm for Optimization of Keyword Extraction Based on the Application of a Linguistic Parser
- Authors: Kravchenko D.Y.1, Kravchenko Y.A1, Mansour A.1, Mohammad J.1, Pavlov N.S1
-
Affiliations:
- Southern Federal University
- Issue: Vol 23, No 2 (2024)
- Pages: 467-494
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/265789
- DOI: https://doi.org/10.15622/ia.23.2.6
- ID: 265789
Cite item
Full Text
Abstract
About the authors
D. Yu Kravchenko
Southern Federal University
Email: dkravchenko@sfedu.ru
Nekrasovsky Lane 44
Yu. A Kravchenko
Southern Federal University
Email: krav-jura@yandex.ru
Nekrasovsky Lane 44
A. Mansour
Southern Federal University
Email: mansur@sfedu.ru
Nekrasovsky Lane 44
J. Mohammad
Southern Federal University
Email: zmohammad@sfedu.ru
Nekrasovsky Lane 44
N. S Pavlov
Southern Federal University
Email: npavlov@sfedu.ru
Nekrasovsky Lane 44
References
- Brown T., Mann B., Ryder N., Subbiah M., Kaplan J.D., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., et al. Language models are few-shot learners // Advances in neural information processing systems. 2020. vol. 33. pp. 1877–1901.
- Zhang Y., Clark S. A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing // Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. 2008. pp. 562–571.
- Gao L., Madaan A., Zhou S., Alon U., Liu P., Yang Y., Callan J., Neubig G. Pal: Program aided language models. 2023. pp. 10764–10799.
- Kravchenko Yu.A., Bova V.V., Kuliev E.V., Rodzin S.I. Simulation of the semantic network of knowledge representation in intelligent assistant systems based on ontological approach // Futuristic Trends in Network and Communication Technologies: Third International Conference, FTNCT. 2021. pp. 241–252.
- Chen D., Manning C.D. A fast and accurate dependency parser using neural networks // Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014. pp. 740–750.
- Kiperwasser E., Goldberg Y. Simple and accurate dependency parsing using bidirectional LSTM feature representations // Transactions of the Association for Computational Linguistics. 2016. vol. 4. pp. 313–327.
- Kulmizev A., de Lhoneux M., Gontrum J., Fano E., Nivre J. Deep Contextualized Word Embeddings in Transition-Based and Graph-Based Dependency Parsing ‒ A Tale of Two Parsers Revisited // arXiv preprint arXiv: 07397. 2019.
- Vasiliev Y. Natural language processing with Python and SpaCy: A practical introduction. No Starch Press, 2020. 216 p.
- Qi P., Zhang Y., Zhang Y., Bolton J., Manning C.D. Stanza: A Python natural language processing toolkit for many human languages // arXiv preprint arXiv: 07082. 2020.
- Gardner M., Grus J., Neumann M., Tafjord O., Dasigi P., Liu N., Peters M., Schmitz M., Zettlemoyer L. Allennlp: A deep semantic natural language processing platform // arXiv preprint arXiv: 07640. 2018.
- Yamada H., Matsumoto Y. Statistical dependency analysis with support vector machines // Proceedings of the eighth international conference on parsing technologies. 2003. pp. 195–206.
- Nivre J. An efficient algorithm for projective dependency parsing // Proceedings of the eighth international conference on parsing technologies. 2003. pp. 149–160.
- Kim G., Baldi P., McAleer S. Language models can solve computer tasks. arXiv preprint arXiv:2303.17491. 2023.
- Liu B., Jiang Y., Zhang X., Liu Q., Zhang S., Biswas J., Stone P. Llm+p: Empowering large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477. 2023.
- Pei W., Ge T., Chang B. An effective neural network model for graph-based dependency parsing // Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. 2015. vol. 1. pp. 313–322.
- McDonald R., Crammer K., Pereira F. Online large-margin training of dependency parsers // Proceedings of the 43rd annual meeting of the association for computational linguistics (ACL’05). 2005. pp. 91–98.
- Eisner J. Three new probabilistic models for dependency parsing: An exploration // arXiv preprint cmp-lg/ 9706003. 1997.
- Tenney I., Das D., Pavlick E. BERT rediscovers the classical NLP pipeline // arXiv preprint arXiv: 05950. 2019.
- Hewitt J., Manning C.D. A structural probe for finding syntax in word representations // Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019. vol. 1. pp. 4129–4138.
- Dozat T., Manning C.D. Deep biaffine attention for neural dependency parsing // arXiv preprint arXiv: 01734. 2016.
- Mao X., Huang S., Li R., Shen L. Automatic keywords extraction based on co-occurrence and semantic relationships between words // IEEE Access. 2020. vol. 8. pp. 117528–117538.
- Yang S., Nachum O., Du Y., Wei J., Abbeel P., Schuurmans D. Foundation models for decision making: Problems, methods, and opportunities. arXiv preprint arXiv:2303.04129. 2023.
- Honnibal M., Johnson M. An Improved Non-monotonic Transition System for Dependency Parsing. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing ‒ Lisbon, Portugal: Association for Computational Linguistics. 2015. pp. 1373–1378. doi: 10.18653/v1/D15-1162.
- Campos R., Mangaravite V., Pasquali A., Jorge A., Nunes C., Jatowt A. YAKE! Keyword extraction from single documents using multiple local features // Information Sciences. 2020. vol. 509. pp. 257–289.
- Rose S., Engel D., Cramer N., Cowley W. Automatic keyword extraction from individual documents // Text mining: applications theory. 2010. pp. 1–20.
- Hulth A. Improved automatic keyword extraction given more linguistic knowledge // Proceedings of the 2003 conference on Empirical methods in natural language processing. 2003. pp. 216–223.
Supplementary files
