The Concept of Processing, Analysis and Visualization of Geophysical Data Based on Elements of Tensor Calculus
- Authors: Vorobeva G.R1, Vorobev A.V1, Orlov G.O1
-
Affiliations:
- Ufa University of Science and Technology
- Issue: Vol 23, No 2 (2024)
- Pages: 572-604
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/265793
- DOI: https://doi.org/10.15622/ia.23.2.10
- ID: 265793
Cite item
Full Text
Abstract
About the authors
G. R Vorobeva
Ufa University of Science and Technology
Email: gulnara.vorobeva@gmail.com
Karl Marx St. 12
A. V Vorobev
Ufa University of Science and Technology
Email: geomagnet@list.ru
Karl Marx St. 12
G. O Orlov
Ufa University of Science and Technology
Email: orlovgleb99@mail.ru
Karl Marx St. 12
References
- Vorobev A.V., Pilipenko V.A., Sakharov Ya.A., Selivanov V.N. Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents // Solar-Terrestrial Physics. 2019. vol. 5. no. 1. pp. 35–42.
- Vorobev A.V., Pilipenko V.A., Enikeev T.A., Vorobeva G.R. Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations // Computer Optics. 2020. vol. 44. no. 5. pp. 782–790.
- Fleming J., Marvel S., Supak S., Motsinger-Reif A., Reif D. ToxPi*GIS Toolkit: creating, viewing, and sharing integrative visualizations for geospatial data using ArcGIS // Journal of Exposure Science & Environmental Epidemiology. 2022. vol. 32. no. 6. pp. 900–907. doi: 10.1038/s41370-022-00433-w.
- Simonyan A., Ohanyan M. Refined Spatio-Temporal Model of Accelerations of the Main Geomagnetic Field on the Earth’s Surface and Geomagnetic Jerks // Geomagnetism and Aeronomy. 2023. vol. 63. no. 3. pp. 325–348. doi: 10.1134/S0016793223600078.
- Boyarchuk M.A., Zhurkin I.G., Nepoklonov V.B. Concept of a visualization method for Earth’s gravity field on plain maps // Scientific Visualization. 2019. vol. 11. no. 1. pp. 70–79. doi: 10.26583/sv.11.1.06.
- Peng Z, Laramee S. Higher Dimensional Vector Field Visualization. A Survey // Theory and Practice of Computer Graphics (TPCG ‘09). 2009. pp. 149–163.
- Meuschke M., Vob S., Gaidzik F., Preim B., Lawonn K. Skyscraper Visualization of Multiple Time-Dependent Scalar Fields on Surfaces // Computers & Graphics. 2021. vol. 99. pp. 22–42. doi: 10.1016/j.cag.2021.05.005.
- Lobo M.-J., Telea A., Hurter C. Feature Driven Combination of Animated Vector Field Visualizations // Computer Graphics Forum. 2020. vol. 39. no. 3. pp. 429–441. doi: 10.1111/cgf.13992.
- Hergl C., Blecha C., Kretzschmar V., Raith F., Gunther F., Stommel M., Jankowai J., Hotz I., Nagel T., Scheuermann G. Visualization of Tensor Fields in Mechanics // Computer Graphics Forum. 2021. vol. 40. no. 6. pp. 135–161. doi: 10.1111/cgf.14209.
- He Z., Hu X., Teng Yu., Zhang X., Shen X. Data agreement analysis and correction of comparative geomagnetic vector observations // Earth, Planets and Space. 2022. vol. 74. doi: 10.1186/s40623-022-01583-9.
- Huang Y., Wu L., Li D. Theoretical Research on Full Attitude Determination Using Geomagnetic Gradient Tensor // The Journal of Navigation. 2015. no. 68(5). pp. 951–961. doi: 10.1017/S0373463315000259.
- Vorobev A.V., Vorobeva G.R., Yusupova N.I. Conception of geomagnetic data integrated space // SPIIRAS Proceedings. 2019. vol. 18. no. 2. pp. 390–415. doi: 10.15622/sp.18.2.390-415.
- Reddy B., Bommala H., Bhyrapuneni S. Strategies and Approaches for Generating Identical Extensive XML Tree Instances // International Journal on Recent and Innovation Trends in Computing and Communication. 2023. vol. 11. pp. 559–564. doi: 10.17762/ijritcc.v11i8s.7238.
- Yu Q., Zhang X., Huang Zh.-H. Tensor Factorization-Based Method for Tensor Completion with Spatio-temporal Characterization // Journal of Optimization Theory and Applications. 2023. vol. 119. pp. 337–362. doi: 10.1007/s10957-023-02287-0.
- Xia S., Qiu D., Zhang X. Tensor factorization via transformed tensor-tensor product for image alignment // Numerical Algorithms. 2023. vol. 22. pp. 1251–1289. doi: 10.1007/s11075-023-01607-9.
- Tomasevic D., Peer P., Solina F., Jaklic A., Struc V. Reconstructing Superquadrics from Intensity and Color Images // Sensors. 2022. vol. 22(14). no. 5332. doi: 10.3390/s22145332.
- Mamieva I. Ruled algebraic surfaces with a main frame from three superellipses // Structural Mechanics of Engineering Constructions and Buildings. 2022. vol. 18. no. 4. pp. 387–395. doi: 10.22363/1815-5235-2022-18-4-387-395.
- Borisenko V., Ustenko S., Ustenko I. Constructing a method for the geometrical modeling of the lame superellipses in the oblique coordinate systems // Eastern-European Journal of Enterprise Technologies. 2020. vol. 2. no. 4. pp. 51–59. doi: 10.15587/1729-4061.2020.201760.
- Olayiwola T., Choi S.-J. Superellipse model: An accurate and easy-to-fit empirical model for photovoltaic panels // Solar Energy. 2023. vol. 262. doi: 10.1016/j.solener.2023.05.026.
- Vorobev A.V., Pilipenko V.A., Enikeev T.A., Vorobeva G.R. Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations // Computer Optics. 2020. vol. 44. no. 5. pp. 782–790.
- Vorobev A.V., Pilipenko V.A., Enikeev T.A., Vorobeva G.R., Khristodulo O.I. System for dynamic visualization of geomagnetic disturbances according to the data of ground magnetic stations // Scientific Visualization. 2021. vol. 13. no. 1. pp. 162–176. doi: 10.26583/sv.13.1.11.
Supplementary files
