The Method of Forming a Digital Shadow of the Human Movement Process Based on the Combination of Motion Capture Systems
- Authors: Obukhov A.D1, Volkov A.A1, Vekhteva N.A1, Patutin K.I1, Nazarova A.O1, Dedov D.L1
-
Affiliations:
- Tambov State Technical University
- Issue: Vol 22, No 1 (2023)
- Pages: 168-189
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/265800
- DOI: https://doi.org/10.15622/ia.22.1.7
- ID: 265800
Cite item
Full Text
Abstract
About the authors
A. D Obukhov
Tambov State Technical University
Email: obuhov.art@gmail.com
Sovetskaya St. 106
A. A Volkov
Tambov State Technical University
Email: didim@eclabs.ru
Sovetskaya St. 106
N. A Vekhteva
Tambov State Technical University
Email: magicanloner@gmail.com
Sovetskaya St. 106
K. I Patutin
Tambov State Technical University
Email: kirill-patutin@mail.ru
Sovetskaya St. 106
A. O Nazarova
Tambov State Technical University
Email: nazarova.al.ol@yandex.ru
Sovetskaya St. 106
D. L Dedov
Tambov State Technical University
Email: hammer68@mail.ru
Sovetskaya St. 106
References
- Grieves M. Origins of the Digital Twin Concept. 2016. URL: https://www.researchgate.net/publication/307509727_ (дата обращения: 03.11.2022).
- Царев М.В., Андреев Ю.С. Цифровые двойники в промышленности: история развития, классификация, технологии, сценарии использования // Известия высших учебных заведений. Приборостроение. 2021. Т. 64. №. 7. С. 517-531.
- Kritzinger W. et al. Digital Twin in manufacturing: A categorical literature review and classification // IFAC-PapersOnLine. 2018. vol. 51. no. 11. pp. 1016-1022.
- Krüger J. et al. Innovative control of assembly systems and lines // CIRP annals. 2017. vol. 66. no. 2. pp. 707-730.
- Botín-Sanabria D.M. et al. Digital twin technology challenges and applications: A comprehensive review // Remote Sensing. 2022. vol. 14. no. 6. p. 1335.
- Pause D., Blum M. Conceptual Design of a Digital Shadow for the Procurement of Stocked Products // IFIP International Conference on Advances in Production Management Systems (APMS). IEEE, 2018. pp. 288-295.
- Srinivasan V. et al. Digital Shadow Model for automated Cabin assembly process. 2021.
- Lee S. et al. Scalable muscle-actuated human simulation and control // ACM Transactions on Graphics (TOG). 2019. vol. 38. no. 4. pp. 1-13.
- Park S. et al. Learning predict-and-simulate policies from unorganized human motion data // ACM Transactions on Graphics (TOG). 2019. vol. 38. no. 6. pp. 1-11.
- Mourot L. et al. A Survey on Deep Learning for Skeleton‐Based Human Animation // Computer Graphics Forum. 2022. vol. 41 (1). pp. 122-157.
- Nikolakis N. et al. The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor // International Journal of Computer Integrated Manufacturing. 2019. vol. 32. no. 1. pp. 1-12.
- Gagneré G., Ternova A. A CAstelet in Virtual reality for shadOw AVatar (CAVOV) // ConVRgence (VRIC) Virtual Reality International Conference Proceedings. Simon Richir (dir.). International Journal of Virtual Reality. 2020. vol. 3316.
- Liu S., Zhang J., Zhang Y., Zhu R. A wearable motion capture device able to detect dynamic motion of human limbs // Nature communications. 2020. vol. 11. no. 1. pp. 1-12.
- Богомолов А.В. Информационные технологии цифровой адаптационной медицины // Информатика и автоматизация. 2021. Т. 20. №. 5. С. 1154-1182.
- Wu Y. et al. A Comprehensive Analysis of the Validity and Reliability of the Perception Neuron Studio for Upper-Body Motion Capture // Sensors. 2022. vol. 22. no. 18. pp. 6954.
- Niehorster D.C., Li L., Lappe M. The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research // i-Perception. 2017. vol. 8. no. 3. pp. 2041669517708205.
- Ikbal M.S., Ramadoss V., Zoppi M. Dynamic pose tracking performance evaluation of HTC Vive virtual reality system // IEEE Access, 2020. vol. 9. pp. 3798-3815.
- Cherkasov K.V. et al. The use of open and machine vision technologies for development of gesture recognition intelligent systems // Journal of Physics: Conference Series, IOP Publishing. 2018. vol. 1015. no. 3. pp. 032166.
- Moeslund T.B., Hilton A., Krüger V. A survey of advances in vision-based human motion capture and analysis // Computer vision and image understanding. 2006. vol. 104. no. 2-3. pp. 90-126.
- Hellsten T. et al. The Potential of Computer Vision-Based Marker-Less Human Motion Analysis for Rehabilitation // Rehabilitation Process and Outcome. 2021. vol. 10. pp. 11795727211022330.
- Mekruksavanich S., Hnoohom N., Jitpattanakul A. A Deep Residual-based Model on Multi-Branch Aggregation for Stress and Emotion Recognition through Biosignals // 2022 19th International Conference on Electrical Engineering / Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2022. pp. 1-4.
- Zielinski E. Live Perception and Real Time Motion Prediction with Deep Neural Networks and Machine Learning // Diss. Harvard University. 2021.
- Ohri A., Agrawal S., Chaudhary G.S. On-device Realtime Pose Estimation & Correction // International Journal of Advances in Engineering and Management (IJAEM). 2021.
- Choo C.Z.Y., Chow J.Y., Komar J. Validation of the Perception Neuron system for full-body motion capture // PloS one. 2022. vol. 17. no. 1. pp. e0262730.
- Obukhov A. et al. Organization of Three-Dimensional Gesture Control Based on Machine Vision and Learning Technologies // Computer Science On-line Conference. Springer, Cham, 2022. pp. 70-81.
- Bazarevsky V. et al. Blazepose: On-device real-time body pose tracking // arXiv preprint arXiv: 2006.10204. 2020.
- Chen Y. et al. Adversarial posenet: A structure-aware convolutional network for human pose estimation // Proceedings of the IEEE International Conference on Computer Vision, 2017. pp. 1212-1221.
Supplementary files
