The Analysis of Ontology-Based Neuro-Symbolic Intelligence Methods for Collaborative Decision Support
- 作者: Shilov N.G1, Ponomarev A.V1, Smirnov A.V1
-
隶属关系:
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
- 期: 卷 22, 编号 3 (2023)
- 页面: 576-615
- 栏目: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/265813
- DOI: https://doi.org/10.15622/ia.22.3.4
- ID: 265813
如何引用文章
全文:
详细
作者简介
N. Shilov
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: nick@iias.spb.su
14-th Line V.O. 39
A. Ponomarev
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: ponomarev@iias.spb.su
14-th Line V.O. 39
A. Smirnov
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: smir@iias.spb.su
14-th Line V.O. 39
参考
- Burkart N., Huber M.F. A survey on the explainability of supervised machine learning // J. Artif. Intell. Res. 2021. vol. 70. pp. 245–317.
- Futia G., Vetrò A. On the integration of knowledge graphs into deep learning models for a more comprehensible AI-Three challenges for future research // Inf. 2020. vol. 11. no. 2. doi: 10.3390/info11020122.
- Smirnov A., Ponomarev A. Human-Machine Collective Intelligence Environment for Decision Support: Conceptual and Technological Design // 27th Conference of Open Innovation Association, FRUCT. 2020. pp. 330–336. doi: 10.23919/FRUCT49677.2020.9211077.
- Fernback J. Symbolic Interactionism in Communication // Communication. Oxford University Press, 2019.
- Garcez A. d’Avila, Lamb L.C. Neurosymbolic AI: The 3rd Wave. 2020. 37 p. doi: 10.48550/arXiv.2012.05876.
- Радюш Д.В. Применение нейро-символьных моделей в разработке вопросно-ответных систем // XI конгресс молодых учёных. Санкт-Петербург, 2022. Т. 2. С. 122–126.
- Каширин И.Ю. Нейронные сети, использующие модели знаний // Современные технологии в науке и образовании – СТНО-2021. 2021. С. 9–13.
- Ultsch A. The Integration of Neural Networks with Symbolic Knowledge Processing // New Approaches in Classification and Data Analysis. 1994. pp. 445–454.
- Picco G. et al. Neural Unification for Logic Reasoning over Natural Language. Findings of the Association for Computational Linguistics: EMNLP. 2021. pp. 3939–3950. doi: 10.48550/arXiv.2109.08460.
- Грибова В.В., Гельцер Б.И., Шахгельдян К.И., Петряева М.В., Шалфеева Е.А., Костерин В.В. Гибридная технология оценки рисков и прогнозирования в кардиологии // Врач и информационные технологии. 2022. № 3. С. 24–35. doi: 10.25881/18110193_2022_3_24.
- Wermter S., Sun R. An Overview of Hybrid Neural Systems // Lect. Notes Artif. Intell. Subseries Lect. Notes Comput. Sci. Springer. 2000. vol. 1778. pp. 1–13.
- Garcez A. d’Avila et al. Neural-Symbolic Computing: An Effective Methodology for Principled Integration of Machine Learning and Reasoning. 2019. vol. 6 no. 4. pp. 611–632. doi: 10.48550/arXiv.1905.06088.
- Tran S.N., d’Avila Garcez A.S. Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks // IEEE Trans. Neural Networks Learn. Syst. 2018. vol. 29. no. 2. pp. 246–258.
- Poon H., Domingos P. Sum-Product Networks: A New Deep Architecture. IEEE International Conference on Computer Vision Workshops (ICCV Workshops). 2012. doi: 10.48550/arXiv.1202.3732.
- Muggleton S. Inverse entailment and progol // New Gener. Comput. 1995. vol. 13. no. 3–4. pp. 245–286.
- Dong H., Mao J., Lin T., Wang C., Li L., Zhou D. et al. Neural Logic Machines. International Conference on Learning Representations. 2019. doi: 10.48550/arXiv.1904.11694.
- Evans R., Grefenstette E. Learning Explanatory Rules from Noisy Data. Journal of Artificial Intelligence Research. 2017. vol. 61. pp. 1–64. doi: 10.48550/arXiv.1711.04574.
- Gori M. Machine Learning: A Constraint-Based Approach. Morgan Kaufmann, 2017. 580 p.
- Garcez A.S. d’Avila, Lamb L.C. Reasoning about time and knowledge in neural-symbolic learning systems // NIPS’03: Proceedings of the 16th International Conference on Neural Information Processing Systems. 2003. pp. 921–928.
- Borges R.V., d’Avila Garcez A., Lamb L.C. Learning and Representing Temporal Knowledge in Recurrent Networks // IEEE Trans. Neural Networks. 2011. vol. 22. no. 12. pp. 2409–2421.
- Penning L. de et al. A Neural-Symbolic Cognitive Agent for Online Learning and Reasoning // Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011). 2011. pp. 1653–1658. doi: 10.5591/978-1-57735-516-8/IJCAI11-278.
- Palangi H. et al. Question-Answering with Grammatically-Interpretable Representations. The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18). 2017. pp. 5350–5357.
- Fletcher J., Obradovi Z. Combining Prior Symbolic Knowledge and Constructive Neural Network Learning // Conn. Sci. 1993. vol. 5. no. 3–4. pp. 365–375.
- Towel G.G., Shavlik J.W., Noordewier M.O. Refinement of Approximate Domain Theories by Knowledge-Based Neural Networks // Eighth National Conference on Artifiical Inrelligence (AAAI). 1990. pp. 861–866.
- Pitz D.W., Shavlik J.W. Dynamically adding symbolically meaningful nodes to knowledge-based neural networks // Knowledge-Based Syst. 1995. vol. 8. no. 6. pp. 301–311.
- Arabshahi F., Singh S., Anandkumar A. Combining Symbolic Expressions and Black-box Function Evaluations in Neural Programs. 6th International Conference on Learning Representations. 2018. doi: 10.48550/arXiv.1801.04342.
- Xie Y. et al. Embedding Symbolic Knowledge into Deep Networks // Adv. Neural Inf. Process. Syst. 2019. no. 32.
- Hu Z. et al. Harnessing Deep Neural Networks with Logic Rules. 2016. pp. 2410–2420. doi: 10.48550/arXiv.1603.06318.
- Prem E. et al. Concept support as a method for programming neural networks with symbolic knowledge // GWAI-92: Advances in Artificial Intelligence. Berlin/Heidelberg: Springer-Verlag. 1992. pp. 166–175.
- Shavlik J.W. Combining symbolic and neural learning // Mach. Learn. 1994. vol. 14, no. 3. pp. 321–331.
- Li Y., Ouyang S., Zhang Y. Combining deep learning and ontology reasoning for remote sensing image semantic segmentation // Knowledge-Based Syst. 2022. vol. 243. pp. 108469.
- Dash T., Srinivasan A., Vig L. Incorporating symbolic domain knowledge into graph neural networks // Mach. Learn. 2021. vol. 110. no 7. pp. 1609–1636.
- Pomerleau D.A., Gowdy J., Thorpe C.E. Combining artificial neural networks and symbolic processing for autonomous robot guidance // Eng. Appl. Artif. Intell. 1991. vol. 4. no. 4. pp. 279–285.
- Bakhti K. et al. Citation Function Classification Based on Ontologies and Convolutional Neural Networks // Commun. Comput. Inf. Sci. 2018. vol. 870. pp. 105–115.
- Deng Y. et al. A Hybrid Movie Recommender Based on Ontology and Neural Networks // 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social Computing. IEEE, 2010. pp. 846–851.
- Trappey A.J.C. et al. Ontology-based neural network for patent knowledge management in design collaboration // Int. J. Prod. Res. 2013. vol. 51. no. 7. pp. 1992–2005.
- Hung C., Wermter S. Neural Network Based Document Clustering Using WordNet Ontologies // Int. J. Hybrid Intell. Syst. 2005. vol. 1. no. 3–4. pp. 127–142.
- Hinnerichs T., Hoehndorf R. DTI-Voodoo: machine learning over interaction networks and ontology-based background knowledge predicts drug–target interactions / ed. Wren J. // Bioinformatics. 2021. vol. 37. no. 24. pp. 4835–4843.
- Lamurias A. et al. BO-LSTM: classifying relations via long short-term memory networks along biomedical ontologies // BMC Bioinformatics. 2019. vol. 20. no. 1. pp. 10.
- Breen C., Khan L., Ponnusamy A. Image classification using neural networks and ontologies // Proceedings. 13th International Workshop on Database and Expert Systems Applications. IEEE Comput. Soc, 2002. pp. 98–102.
- Xu J. et al. A Semantic Loss Function for Deep Learning with Symbolic Knowledge // Proc. Mach. Learn. Res. 2018. vol. 80. pp. 5502–5511.
- Yang Z., Ishay A., Lee J. NeurASP: Embracing Neural Networks into Answer Set Programming // Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2020. pp. 1755–1762.
- Lee J., Wang Y. Weighted Rules under the Stable Model Semantics // Proceedings, Fifteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2016). 2016. pp. 145–154.
- Garcez A.S. d’Avila et al. Abductive reasoning in neural-symbolic systems // Topoi. 2007. vol. 26. no. 1. pp. 37–49.
- Lai P. et al. Ontology-based Interpretable Machine Learning for Textual Data // 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. pp. 1–10.
- Аверкин А.Н. Объяснимый искусственный интеллект: итоги и перспективы // Интегрированные модели и мягкие вычисления в искусственном интеллекте (ИММВ-2021). Сборник научных трудов X-й Международной научно-технической конференции. 2021. С. 153–174.
- Карпов О.Э., Андриков Д.А., Максименко В.А., Храмов А.Е. Прозрачный искусственный интеллект для медицины // Врач и информационные технологии. 2022. № 2. C. 4–11. doi: 10.25881/18110193_2022_2_4.
- Захарова И.Г., Воробьева М.С., Боганюк Ю.В. Сопровождение индивидуальных образовательных траекторий на основе концепции объяснимого искусственного интеллекта // Образование и наука. 2022. Т. 24. № 1. pp. 163–190.
- Шевская Н.В. Объяснимый искусственный интеллект и методы интерпретации результатов // Моделирование, оптимизация и информационные технологии. 2021. Т. 9. № 2(33). pp. 22.
- 50. Аверкин А.Н., Ярушев С.А. Обзор исследований в области разработки методов извлечения правил из искусственных нейронных сетей // Известия Российской академии наук. Теория и системы управления. 2021. № 6. С. 106–121.
- Шевская Н.В., Охримук Е.С., Попов Н.В. Причинно-следственные связи в объяснимом искусственном интеллекте // Международная конференция по мягким вычислениям и измерениям. 2022. С. 170–173.
- Bourgeais V. et al. Deep GONet: self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data // BMC Bioinformatics. BioMed Central, 2021. vol. 22. pp. 1–24.
- Ma T., Zhang A. Incorporating Biological Knowledge with Factor Graph Neural Network for Interpretable Deep Learning. 2019. doi: 10.48550/arXiv.1906.00537.
- Panigutti C., Perotti A., Pedreschi D. Doctor XAI An ontology-based approach to black-box sequential data classification explanations // FAT* 2020 – Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. 2020. pp. 629–639.
- Daniels Z.A. et al. A framework for explainable deep neural models using external knowledge graphs / Ed. Pham T., Solomon L., Rainey K. // Proc. SPIE 11413, Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications IISPIE, 2020. pp. 73.
- Confalonieri R. et al. An Ontology-based Approach to Explaining Artificial Neural Networks. 2019.
- Confalonieri R. et al. Trepan reloaded: A knowledge-driven approach to explaining black-box models // Front. Artif. Intell. Appl. 2020. vol. 325. pp. 2457–2464.
- Confalonieri R. et al. Using ontologies to enhance human understandability of global post-hoc explanations of black-box models // Artif. Intell. Elsevier, 2021. vol. 296. pp. 103471.
- Bourguin G. et al. Towards Ontologically Explainable Classifiers. Artificial Neural Networks and Machine Learning – ICANN. 2021. pp. 472–484. DOI: ff10.1007/978-3-030-86340-1_38.
- Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead // Nat. Mach. Intell. 2019. vol. 1. no. 5. pp. 206–215.
- Voogd J. et al. Using Relational Concept Networks for Explainable Decision Support // 3rd IFIP Cross Domain Conference for Machine Learning and Knowledge Extraction (CD-MAKE). 2019. pp. 78–93. doi: 10.1007/978-3-030-29726-8_6.
- Fong A.C.M., Hong G. Ontology-Powered Hybrid Extensional-Intensional Learning // Proceedings of the 2019 International Conference on Information Technology and Computer Communications (ITCC2019). New York, USA: ACM Press, 2019. pp. 18–23.
- Bellucci M. et al. Ontologies to build a predictive architecture to classify and explain // DeepOntoNLP Workshop @ESWC 2022. 2022.
- Martin T. et al. Bridging the gap between an ontology and deep neural models by pattern mining // The Joint Ontology Workshops, JOWO. 2020. vol. 2708.
- De Sousa Ribeiro M., Leite J. Aligning Artificial Neural Networks and Ontologies towards Explainable AI // Proceedings of the AAAI Conference on Artificial Intelligence. 2021. vol. 35. no. 6. pp. 4932–4940.
- Agafonov A., Ponomarev A. An Experiment on Localization of Ontology Concepts in Deep Convolutional Neural Networks // The 11th International Symposium on Information and Communication Technology. NY, USA: ACM, 2022. pp. 82–87.
- Ponomarev A., Agafonov A. Ontology Concept Extraction Algorithm for Deep Neural Networks // 2022 32nd Conference of Open Innovations Association (FRUCT). IEEE, 2022. pp. 221–226.
- Sarker M.K. et al. Wikipedia Knowledge Graph for Explainable AI // KGSWC 2020, CCIS 1232. 2020. pp. 72–87.
- Abbass H.A. et al. Machine Education: Designing semantically ordered and ontologically guided modular neural networks // IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2019. pp. 948–955.
- Smirnov A. et al. Multi-aspect Ontology for Interoperability in Human-machine Collective Intelligence Systems for Decision Support // Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. SCITEPRESS – Science and Technology Publications, 2019. pp. 458–465.
补充文件
