Motion Primitives in the Trajectory Planning Problem with Kinematic Constraints
- Authors: Golovin V.A1, Yakovlev K.S2
-
Affiliations:
- Moscow Institute of Physics and Technology (MIPT)
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences (FRC CSC RAS)
- Issue: Vol 22, No 6 (2023)
- Pages: 1354-1386
- Section: Robotics, automation and control systems
- URL: https://journal-vniispk.ru/2713-3192/article/view/265838
- DOI: https://doi.org/10.15622/ia.22.6.4
- ID: 265838
Cite item
Full Text
Abstract
About the authors
V. A Golovin
Moscow Institute of Physics and Technology (MIPT)
Email: golovin.va@phystech.edu
Institutskiy Lane 9
K. S Yakovlev
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences (FRC CSC RAS)
Email: yakovlev@isa.ru
60-letiya Oktyabrya Ave. 9
References
- Дудакова Д.С., Анохин В.М., Дудаков М.О., Ронжин А.Л. О теоретических основах аэролимнологии: изучение пресных водоемов и прибрежных территорий с применением воздушных робототехнических средств // Информатика и автоматизация. 2022. Т. 21. № 6. С. 1359–1393.
- Балабанов А.Н., Безуглая А.Е., Шушляпин Е.А. Управление манипулятором подводного робота // Информатика и автоматизация. 2021. Т. 20. № 6. С. 1307–1332. doi: 10.15622/ia.20.6.5.
- Макаров Д.А., Панов А.И., Яковлев К.С. Архитектура многоуровневой интеллектуальной системы управления беспилотными летательными аппаратами // Искусственный интеллект и принятие решений. 2015. № 3. С. 18–33.
- Otsu K., Matheron G., Ghosh S., Toupet O., Ono M. Fast approximate clearance evaluation for rovers with articulated suspension systems // Journal of Field Robotics. 2020. vol. 37. no. 5. pp. 768–785.
- Al Mashhadany Y.I. Design and analysis of 7-DOF human-link manipulator based on hybrid intelligent controller // Informatics and Automation. 2020. vol. 19. no. 4. pp. 774–802.
- Пшихопов В.Х., Медведев М.Ю. Планирование движения группы подвижных объектов в двумерной среде с препятствиями // Известия Южного федерального университета. Технические науки. 2016. Т. 2(175). С. 6–22.
- LaValle S.M. Rapidly-exploring random trees: A new tool for path planning. Research Report 9811. 1998.
- Kuffner J.J., LaValle S.M. RRT-connect: An efficient approach to single-query path planning // Proceedings ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings. 2000. vol. 2. pp. 995–1001.
- Sharma P., Gupta A., Ghosh D., Honkote V., Nandakumar G., Ghose, D. PG-RRT: A Gaussian Mixture Model Driven, Kinematically Constrained Bi-directional RRT for Robot Path Planning // Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. 2021. pp. 3666–3673.
- Webb D.J., Van Den Berg J. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics // IEEE international conference on robotics and automation. IEEE. 2013. pp. 5054–5061.
- Gammell J.D., Srinivasa S.S., Barfoot T.D. Informed RRT: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic // IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2014. pp. 2997–3004.
- Zhang Y., Sun H., Zhou J., Pan J., Hu J., Miao J. Optimal vehicle path planning using quadratic optimization for baidu apollo open platform // IEEE Intelligent Vehicles Symposium (IV). IEEE. 2020. pp. 978–984.
- Li B., Wang K., Shao Z. Time-optimal maneuver planning in automatic parallel parking using a simultaneous dynamic optimization approach // IEEE Transactions on Intelligent Transportation Systems. 2016. vol. 17. no. 11. pp. 3263–3274.
- Karlsson J., Murgovski N., Sjoberg J. Computationally efficient autonomous overtaking on highways // IEEE Transactions on Intelligent Transportation Systems. 2019. vol. 21. no. 8. pp. 3169–3183.
- Heiden E., Palmieri L., Koenig S., Arras K.O., Sukhatme G.S. Gradient-informed path smoothing for wheeled mobile robots // Proceedings of the IEEE International Conference on Robotics and Automation. 2018. pp. 1710–1717.
- Yongzhe Z., Ma B., Wai C.K. A practical study of time-elastic-band planning method for driverless vehicle for auto-parking // International Conference on Intelligent Autonomous Systems (ICoIAS). IEEE. 2018. pp. 196–200.
- Kicki P., Gawron T., Cwian K., Ozay M., Skrzypczynski P. Learning from experience for rapid generation of local car maneuvers // Engineering Applications of Artificial Intelligence. 2021. vol. 105. pp. 104399. doi: 10.1016/j.engappai.2021.104399.
- Vitelli M., Chang Y., Ye Y., Ferreira A., Wolczyk M., Osinski B., Niendorf M., Grimmett H., Huang Q., Jain A., Ondruska P. Safetynet: Safe planning for real-world self-driving vehicles using machine-learned policies // International Conference on Robotics and Automation (ICRA). IEEE. 2022. pp. 897–904.
- Nasiriany S., Pong V., Lin S., Levine S. Planning with goal-conditioned policies // Advances in Neural Information Processing Systems. 2019. vol. 32.
- Chen L., Hu X., Tang B., Cheng Y. Conditional DQN-Based Motion Planning With Fuzzy Logic for Autonomous Driving // IEEE Transactions on Intelligent Transportation Systems. 2020. vol. 23. no. 4. pp. 2966–2977.
- Wu K., Wang H., Esfahani M.A., Yuan S. Achieving Real-Time Path Planning in Unknown Environments Through Deep Neural Networks. IEEE Transactions on Intelligent Transportation Systems. 2022. vol. 23. no. 3. pp. 2093–2102.
- Cohen B.J., Chitta S., Likhachev M. Search-based planning for manipulation with motion primitives // IEEE International Conference on Robotics and Automation. 2010. pp. 2902–2908. doi: 10.1109/ROBOT.2010.5509685.
- Low T., Bandyopadhyay T., Borges P.V. Identification of effective motion primitives for ground vehicles // IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2020. pp. 2027–2034.
- Wang B., Gong J., Chen H. Motion primitives representation, extraction and connection for automated vehicle motion planning applications // IEEE Transactions on Intelligent Transportation Systems. 2019. vol. 21. no. 9. pp. 3931–3945.
- Jarin-Lipschitz L., Paulos J., Bjorkman R., Kumar V. Dispersion-minimizing motion primitives for search-based motion planning // IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021. pp. 12625–12631.
- Bergman K., Ljungqvist O., Axehill D. Improved optimization of motion primitives for motion planning in state lattices // IEEE Intelligent Vehicles Symposium (IV). IEEE. 2019. pp. 2307–2314.
- Koutras L., Doulgeri Z. Dynamic movement primitives for moving goals with temporal scaling adaptation // IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020. pp. 144–150.
- Abu-Dakka F.J., Kyrki V. Geometry-aware dynamic movement primitives // IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2020. pp. 4421–4426.
- Sood R., Vats S., Likhachev M. Learning to use adaptive motion primitives in search-based planning for navigation // IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2020. pp. 6923–6929.
- Chernik C., Tajvar P., Tumova J. Robust Feedback Motion Primitives for Exploration of Unknown Terrains // IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2021. pp. 8173–8179.
- Palmieri L., Arras K.O. A novel RRT extend function for efficient and smooth mobile robot motion planning // Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014. pp. 205–211.
- Яковлев К.С., Белинская Ю.С., Макаров Д.А., Андрейчук А.А. Безопасно-интервальное планирование и метод накрытий для управления движением мобильного робота в среде со статическими и динамическими препятствиями // Автоматика и телемеханика. 2022. № 6. С. 96–117.
- Wang X., Krasowski H., Althoff M. CommonRoad-RL: A configurable reinforcement learning environment for motion planning of autonomous vehicles // IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE. 2021. pp. 466–472.
- Ilievski M. Wisebench: A motion planning benchmarking framework for autonomous vehicles: MS thesis. Ontario: University of Waterloo, 2020. 129 p.
- Xu C., Ding W., Lyu W., Liu Z., Wang S., He Y., Hu H., Zhao D., Li B. SafeBench: A Benchmarking Platform for Safety Evaluation of Autonomous Vehicles // Advances in Neural Information Processing Systems. 2022. vol. 35. pp. 25667–25682.
- Heiden E., Palmieri L., Bruns L., Arras K.O., Sukhatme G.S., Koenig S. Bench-MR: A motion planning benchmark for wheeled mobile robots // IEEE Robotics and Automation Letters. 2021. vol. 6. no. 3. pp. 4536–4543.
Supplementary files
