Synthesis of Line of Sight Angle Coordinate Filter on the Basis of Interactive Multi-Model Evaluation Algorithm
- 作者: Trung D.T1, Tuan N.N2, Bang N.V3, Tuyen T.V2
-
隶属关系:
- Electric Power University
- Le Quy Don University of Science and Technology
- Vietnam Air and Air Defense Forces Academy
- 期: 卷 20, 编号 6 (2021)
- 页面: 1333-1367
- 栏目: Robotics, automation and control systems
- URL: https://journal-vniispk.ru/2713-3192/article/view/266274
- DOI: https://doi.org/10.15622/ia.20.6.6
- ID: 266274
如何引用文章
全文:
详细
On the basis of the tracking multi-loop target angle coordinate system, the article has selected and proposed a interactive multi-model adaptive filter algorithm to improve the quality of the target phase coordinate filter. In which, the 3 models selected to design the line of sight angle coordinate filter; Constant velocity (CV) model, Singer model and constant acceleration model, characterizing 3 different levels of maneuverability of the target. As a result, the evaluation quality of the target phase coordinates is improved because the evaluation process has redistribution of the probabilities of each model to suit the actual maneuvering of the target. The structure of the filters is simple, the evaluation error is small and the maneuvering detection delay is significantly reduced. The results are verified through simulation, ensuring that in all cases the target is maneuvering with different intensity and frequency, the line of sight angle coordinate filter always accurately determines the target angle coordinates.
作者简介
D. Trung
Electric Power University
编辑信件的主要联系方式.
Email: dangtientrung@gmail.com
Hoang Quoc Viet 235
N. Tuan
Le Quy Don University of Science and Technology
Email: ngoctuanhvhn@gmail.com
Hoang Quoc Viet 236
N. Bang
Vietnam Air and Air Defense Forces Academy
Email: banghvpkkq@gmail.com
Nguyen Van Troi 104
T. Tuyen
Le Quy Don University of Science and Technology
Email: thaisonmos@gmail.com
Hoang Quoc Viet 236
参考
- Liu T., Xie Y. A relative navigation algorithm for a chaser tracking a non-cooperative maneuvering target in space // 31(5). 2016. pp. 1338–1344
- Jiyuan L., Jun Z., Yingying L. Applying auto-adaptation filter to tracking of maneuvering target in special relative navigation // J. Northwest. Polytech. Univ. 4, 013. 2018.
- Канащенкова А.И., Меркулова В.И. Авиационные системы радиоуправления // Радиотехника. Москва. 2013.
- Bar S.Y., Rong L.X., Kirubarajan T. Estimation with applications to tracking and navigation // Theory Algorithms and Software. John Wiley & Sons. 2011.
- Blackman S., Popoli R. Design and analysis of modern tracking systems // Artech House. 2009.
- Shaofeng M., Xinxi F., Yulei L., Zhang W., Xiaomei Z. A variable dimension adaptive IMM tracking algorithm // Electron. Opt. Control 22.(02). 2016. pp. 36-45.
- Xiu L. H., Jing S.Y. Curve model of adaptive interaction model algorithm tracking method // Applied Mechanics and Materials. Vol 738-739. March 2018. pp. 344-349.
- Jiangw L.V.Z., Lan Y. IMM-CKF algorithm based on variable dimension interaction // Comput. Appl. Softw. 30(5). 4–6. 2017.
- Nguyen. N.T., Nguyen D.T., Nguyen V.B. Synthesis of remote control law when taking into dynamics and nonlinearity of the missile stage // The International Conference on Intelligent Systems & Networks. Springer. March 2021.
- Xiong K., Wei C. Spacecraft relative navigation based on multiple model adaptive estimator // J. Syst. Sci. Math. Sci. 34(07). 2018. pp. 828–837.
- Sambasiva R., Raj K. Implementation of adaptive filter algorithm for underwater acoustic System // International Journal of Recent Trends in Engineering. Vol 2. No.2. 2019. pp. 13-22.
- Le X.R., Kilkov V.P. A survey of maneuvering target tracking: Approximation techniques for nonlinear filtering // Proceedings of SPIE conference on signal and data processing of small targets. 2014. pp. 537-550.
- Li X.R., Jilkov V.P. Survey of maneuvering target tracking-part V // IEEE transaction on aerospace and electronic systems. 41 (4). 2015. pp. 1255-1321.
- Benlian X. An adaptive tracking algorithm for bearings-only maneuvering target // International journal of computer science and network security. 7 (1). 2017.
- Yang C., Blasch E. Characteristic errors of the IMM algorithm under three maneuver models for an accelerating target // In: International Conference on Information Fusion. IEEE. 2018.
- Yang C.C., Tsung T.K. An interactive dynamic multi-objective programming model to support better land use planning // Land Use Policy, Elsevier, Vol.36. 2016. pp. 13-22
- Qian G.H., Li Y., Luo R.J. One maneuvering frequency and the variance adaptive filtering algorithm for maneuvering target tracking // J. Radars 2(6).2017. pp. 258–264.
- Sik K.H., Yong C. S. Design of fuzzy IMM algorithm based on Basic Sub-models and Time-varying mode transition probabilities // International journal of control automation and systems. 4 (5). 2016. pp. 559-566.
- Bum L. J., Hoon J. Y., Bea P. J. IMM method using intelligent input estimation for maneuvering target tracking // ICCAS 2013. pp. 1278-1282.
- Nguyen V.B., Nguyen N. T. Synthesis of parameter recognition algorithm and state evaluation for flight device // East European Scientific Journal. Vol 2. No.66. 2021. pр. 10-17.
- Nguyen V.B, Dang C.V. Synthesis of the maneuver target acceleration determines algorithm // Journal of natural and technical sciences. Sputnik Publishing House. No.2 (153). 2021. pp. 145-156.
- Wu N.E., Zhang Y., Zhou K. Detection, estimation and accommodation of loss of control effectiveness // International journal of adaptive control and signal processing. 14. 2010. pp. 775-795.
- Kim H.S., Park J.G., Lee D. Adaptive fuzzy IMM algorithm for uncertain target tracking // Int. J. Control Autom. Syst. 7(6). 2017. pp. 1001–1008.
- Ren J., Zhang X. Interactive multi-model target maneuver tracking method based on the adaptive probability correction // International Conference on Swarm Intelligence, ICSI 2018. pp. 235-245.
补充文件
