Spoofing Attack Detection Method for UAV Navigation System

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

An implementation of methods for protecting unmanned aerial vehicles (UAVs) from spoofing attacks of the global positioning system (GPS) to ensure safe navigation is discussed in this paper. The Global Navigation Satellite System (GNSS) is widely used to locate UAVs and is by far the most popular navigation solution. This is due to the simplicity and relatively low cost of this technology, as well as the accuracy of the transmitted coordinates. However, there are many security threats to GPS navigation. Primarily this is due to the nature of the GPS signal, the signal is transmitted in the clear, so an attacker can block or tamper with it. This study analyzes the existing GPS protection methods. As part of the study, an experimental stand and scenarios of attacks on the UAV GPS system were developed. Data from the UAV flight logbook was collected and an analysis of cyber-physical parameters was carried out to see an effect of the attack on the on-board sensors readings. Based on this, a new method for detecting UAV anomalies was proposed, based on an analysis of changes in UAV internal parameters. This self-diagnosis method allows the UAV to independently assess the presence of changes in its subsystems and identify signs of a cyberattack. To detect an attack, the UAV collects data on changes in cyber-physical parameters over a certain period of time, then updates this data. As a result it is necessary for the UAV to determine the degree of difference between the two time series of the collected data. The greater the degree of difference between the updated data and the previous ones, the more likely the UAV is under attack.

Авторлар туралы

E. Basan

Southern Federal University

Email: ebasan@sfedu.ru
Chekhova 2

E. Abramov

Southern Federal University

Email: abramoves@sfedu.ru
Chekhova 2

A. Basyuk

Southern Federal University

Email: basyuk@sfedu.ru
Chekhova 2

N. Sushkin

Southern Federal University

Email: sushkin@sfedu.ru
Chekhova 2

Әдебиет тізімі

  1. Semanjski S., Semanjski I., Wilde W.D., Gautama S. Use of supervised machine learning for GNSS signal spoofing detection with validation on real-world meaconing and spoofing data—Part II. Sensors. 2020. № 20(7):1806. pp. 1-15.
  2. Kwon K.-C., Shim D.-S. Performance analysis of direct GPS spoofing detection method with HRS/Accelerometer. Sensors. 2020. № 20(4): 954.
  3. Wan W., Kim H., Hovakimyan N., Sha L., Voulgaris P.G. A Safety Constrained Control Framework for UAVs in GPS Denied Environment. 59-th IEEE Conference on Decision and Control (CDC). Korea (South). 2020. pp. 214-219.
  4. Seo S.-H., Lee B.-H., Im S.-H., Jee G. Effect of spoofing on unmanned aerial vehicle using counterfeited GPS signal. Journal of Positioning Navigation and Timing. 2015. № 6. pp. 57-65.
  5. Shepard D., Humphreys T., Fansler A. Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks. International Journal of Critical Infrastructure Protection. 2012. № 5(3-4). pp. 146-153.
  6. Jansen K., Schäfer M., Moser D., Lenders V., Pöpper C., Schmitt J. Crowd-GPS-sec: Leveraging crowdsourcing to detect and localize GPS spoofing attacks. Proc. IEEE Symp. Security Privacy (SP). San Francisco. CA. USA: IEEE. 2018. pp. 1018-1031.
  7. Montgomery P.Y., Humphreys T.E., Ledvina B.M. Receiver-autonomous spoofing detection: Experimental results of a multi-antenna receiver defense against a portable civil GPS spoofer. Proceedings of the 2009 International Technical Meeting of The Institute of Navigation. Anaheim. CA. 2009. pp. 124-130.
  8. Jansen K., Tippenhauer O., Pöpper C. Multi-receiver GPS spoofing detection: Error models and realization. Proceedings of the 32nd Annual Conference on Computer Security Application. New York, United States: Association for Computing Machinery. 2016. pp. 237-250.
  9. Heng L., Work D.B., Gao G.X. GPS signal authentication from cooperative peers. IEEE Trans. Intell. Transp. Syst. 2015. vol. 16. № 4. pp. 1794-1805.
  10. G. Panice et al. A SVM-based detection approach for GPS spoofing attacks to UAV. 23-rd International Conference on Automation and Computing (ICAC). Hudders-field. 2017. pp. 1-11.
  11. Eldosouky A., Ferdowsi A., Saad W. Drones in Distress: A Game-Theoretic Countermeasure for Protecting UAVs Against GPS Spoofing. IEEE Internet of Things Journal. 2020. vol. 7. № 4. pp. 2840-2854.
  12. Qiao Y., Zhang Y., Du X. A Vision-Based GPS-Spoofing Detection Method for Small UAVs. 13-th International Conference on Computational Intelligence and Security (CIS). Hong Kong. 2017. pp. 312-316.
  13. Choudhary G., Sharma V., You I., Yim K., Chen I.-R., Cho J.-H. Intrusion Detection Systems for Networked Unmanned Aerial Vehicles: A Survey. 14-th IEEE Interna-tional Wireless Communications & Mobile Computing Conference. Limassol. Cyprus. 2018. pp. 560-565.
  14. Bekmezci I., Senturk E., Turker T. Security issues in Flying Adhoc Networks (FANETs). Journal of Aeronautics and Space Technologies. 2016. vol. 9. № 2. pp. 13-21.
  15. Li C., Wang X. Jamming research of the UAV GPS/INS integrated navigation sys-tem based on trajectory cheating. 9-th International Congress on Image and Signal Pro-cessing, BioMedical Engineering, and Informatics (CISP-BMEI). 2016. Datong. pp. 1113-1117.
  16. Schmidt D., Radke K., Camtepe S., Foo E., Ren M. A survey and analysis of the GNSS spoofing threat and countermeasures. ACM Comput. Surveys (CSUR). 2016. vol. 48. № 4. pp. 64-69.
  17. Joshi D. Commercial Unmanned Aerial Vehicle (UAV) Market Analysis – Industry Trends Companies and What You Should Know. Business Insider. 2017.
  18. Afgani M., Sinanovic S., Haas H. Anomaly detection using the Kullback-Leibler divergence metric. First International Symposium on Applied Sciences on Biomedical and Communication Technologies. 2008. Aalborg. pp. 1-5.
  19. Basan, E., Basan, A., Nekrasov, A., .Gamec, J., Gamcová, M. A self-diagnosis method for detecting UAV cyber attacks based on analysis of parameter changes. Switzerland. 2021. № 21(2). pp. 1–17.
  20. E. Basan, A. Basan, A. Nekrasov. Method for detecting abnormal activity in a group of mobile robots. Sensors. 2019. Vol. 19. № 18:4007. pp. 1-21.
  21. В.Н. Максименко, Д.А. Ухин. [Анализ уязвимостей каналов связи спутниковых навигационных систем LBS-услуги]. Экономика и качество систем связи. 2019. №1. С. 18–22. http://nirit.org/wp-content/uploads/2019/06/18-22.pdf
  22. L.A. Dobryakova, Ł.S. Lemieszewski., E.F. Ochin. [Атаки на глобальные навигационные спутниковые системы и обнаружение спуфинга беспилотных кораблей, базирующееся на облачных технологиях]. Ural radio engineering journal. 2018. Vol.2 № 2. DOI: https://doi.org/10.15826/urej.2018.2.2.003
  23. Котенко И. В., Саенко И. Б. Архитектура системы интеллектуальных сервисов защиты информации в критически важных инфраструктурах // Труды СПИИРАН. 2013. № 1 (24). С. 21–40.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».