Geometric Piecewise Cubic Bézier Interpolating Polynomial with C2 Continuity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Bézier curve is a parametric polynomial that is applied to produce good piecewise interpolation methods with more advantage over the other piecewise polynomials. It is, therefore, crucial to construct Bézier curves that are smooth and able to increase the accuracy of the solutions. Most of the known strategies for determining internal control points for piecewise Bezier curves achieve only partial smoothness, satisfying the first order of continuity. Some solutions allow you to construct interpolation polynomials with smoothness in width along the approximating curve. However, they are still unable to handle the locations of the inner control points. The partial smoothness and non-controlling locations of inner control points may affect the accuracy of the approximate curve of the dataset. In order to improve the smoothness and accuracy of the previous strategies, а new piecewise cubic Bézier polynomial with second-order of continuity C2 is proposed in this study to estimate missing values. The proposed method employs geometric construction to find the inner control points for each adjacent subinterval of the given dataset. Not only the proposed method preserves stability and smoothness, the error analysis of numerical results also indicates that the resultant interpolating polynomial is more accurate than the ones produced by the existing methods.

Авторлар туралы

M. Fadhel

Al-Muthanna University

Хат алмасуға жауапты Автор.
Email: mustafa@mu.edu.iq

Z. Omar

Universiti Utara Malaysia

Email: zurni@uum.edu.my

Әдебиет тізімі

  1. Alawadi F. New Pattern Recognition Methods for Identifying Oil Spills from Satellite Remote Sensing Data // Image and Signal Processing for Remote Sensing XV. 2009. vol. 7477. pp. 74770X.
  2. Amenta N., Bern M. Surface Reconstruction by Voronoi Filtering // Discrete & Computational Geometry. 1999. vol. 22. pp. 481–504.
  3. Kondrashov D., Ghil M. Spatio-Temporal Filling of Missing Points in Geophysical Data Sets // Nonlinear Processes in Geophysics. 2006. vol. 13(2). pp. 151–159.
  4. Chen F., Lou W. Degree Reduction of Interval Bézier Curves // CAD Computer Aided Design. 2000. vol. 32(10). pp. 571–582.
  5. Wu Q.B., Xia F.H. Shape modification of Bézier curves by constrained optimization // Journal of Zhejiang University: Science. 2005. vol. 6. pp. 124–127.
  6. Al-Shemary M.A.F. Interpolation by Using Bézier Curve Numerically with Image Processing Applications // Journal of Al-Qadisiyah for Computer Science and Mathematics. 2011. vol. 3(2). pp. 400–409.
  7. Sederberg T.W., Farouki R.T. Approximation by Interval Bézier Curves // IEEE Computer Graphics and Applications. 1992. vol. 12. pp. 87–59.
  8. Hwang J.H., Arkin R.C., Kwon D.S. Mobile Robots at your Fingertip: Bezier Curve on-line Trajectory Generation for Supervisory Control // 2003 EEE/RSJ International Conference on Intelligent Robots and Systems. 2003. vol. 2. pp. 1444–1449.
  9. Škrjanc I., Klančar G. Cooperative Collision Avoidance Between Multiple Robots Based on Bernstein-Bézier Curves // International Conference on Information Technology Interfaces. 2007. pp. 34–43.
  10. Ho M.L., Chan P.T., Rad A.B. Lane Change Algorithm for Autonomous Vehicles via Virtual Curvature Method // Journal of Advanced Transportation. 2009. vol. 43(1). pp. 47–70.
  11. Korzeniowski D., Ślaski G. Method of Planning a Reference Trajectory of a Single Lane Change Manoeuver with Bezier Curve // IOP Conference Series: Materials Science and Engineering. 2016. vol. 148(1). 243 p.
  12. Lattarulo R. et al. Urban Motion Planning Framework Based on N-Bézier Curves Considering Comfort and Safety // Journal of Advanced Transportation. 2018. 29 p.
  13. Perez J., Godoy J., Villagra J., Onieva E. Trajectory Generator for Autonomous Vehicles in Urban Environments // 2013 IEEE International Conference on Robotics and Automation. 2013. pp. 409–414.
  14. Ge Q.J., Kang D. Motion Interpolation With G2 Composite Bezier Motions. 1995. pp. 520–525.
  15. Pollock D.S.G. Signal Processing and its Applications // Handbook of time series analysis, signal processing, and dynamics. 1999. 543 p.
  16. Shemanarev M. A Very Simple Method of Smoothing. Retrieved from The Anti-Grain Geometry 2002. URL: http://www.antigrain.com/agg_research/bezier_ interpolation.html (дата обращения: 12.12.2020).
  17. Yau H.T., Wang J.B. Fast Bezier Interpolator with Real-Time Lookahead Function for High-Accuracy Machining // International Journal of Machine Tools and Manufacture. 2007. vol. 47(10). pp. 1518–1529.
  18. Saaban A., Zainudin L., Bakar M.N.A. On Piecewise Interpolation Techniques for Estimating Solar Radiation Missing Values in Kedah // AIP Conference Proceedings, 1635 (Icoqsia). 2014. pp. 217–221.
  19. Karim S.A.A. Shape Preserving by Using Rational Cubic Ball Interpolant // Far East Journal of Mathematical Sciences. 2015. vol. 96(2). pp. 211–230.
  20. Saaban A., Zainudin M.L., Abu Bakar M.N. Piecewise Positivity Preserving Cubic Bezier Interpolation for Estimating Solar Radiation Missing Value in Penang, Malaysia // Journal of Mathematics and Statistics. 2016. vol. 12(4). pp. 302–307.
  21. Ueda E.K. et al. Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing // IFAC-PapersOnLine. 2016. vol. 49(31). pp. 49–54.
  22. Stelia O., Potapenko L., Sirenko I. Application of Piecewise-Cubic Functions for Constructing a Bezier Type Curve of C1 Smoothness // Eastern-European Journal of Enterprise Technologies. 2018. vol. 4(2). pp. 46–52.
  23. Zulkifli N.A.B. et al. Image Interpolation Using a Rational Bi-Cubic Ball // Mathematics. 2019. vol. 7(11). 29 p.
  24. Elber G. Interpolation Using Bézier Curves // Graphics Gems III (IBM Version). 1992. vol. 0. pp. 133–136.
  25. Quarteroni A., Sacco R., Saleri F. Numerical Mathematics // Applied Mathematics 2000. vol. 37. 57 p.
  26. Hansford D. Bézier Techniques // Handbook of Computer Aided Geometric Design 2002. pp. 75–109.
  27. Burden R.L., Faires J.D. Numerical Analysis (Tenth Edit) // Brooks/Cole. 2015.
  28. Rabbath C.A., Corriveau D. A comparison of piecewise cubic Hermite interpolating polynomials, cubic splines and piecewise linear functions for the approximation of projectile aerodynamics // Defence Technology. 2019. vol. 15(5). pp. 741–757.
  29. Moler C. Makima Piecewise Cubic Interpolation // MathWorks. 2019.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».