Hybrid Method of Conventional Neural Network Training
- 作者: Golubinskiy A.N1, Tolstykh A.A2
-
隶属关系:
- JSC “Concern “Sozvezdie”
- Moscow University of the Ministry of Internal Affairs of Russia
- 期: 卷 20, 编号 2 (2021)
- 页面: 463-490
- 栏目: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/266310
- DOI: https://doi.org/10.15622/ia.2021.20.2.8
- ID: 266310
如何引用文章
全文:
详细
作者简介
A. Golubinskiy
JSC “Concern “Sozvezdie”
Email: annikgol@mail.ru
Moskovsky Av. 92
A. Tolstykh
Moscow University of the Ministry of Internal Affairs of Russia
Email: tolstykh.aa@yandex.ru
Koptevskaya St. 63
参考
- Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение. Москва: «ДМК Пресс», 2017. 652 с.
- Хайкин С. Нейронные сети. Полный курс. 2-е изд. Москва: Издательский дом "Вильямс", 2006. 1104 с.
- Kingma D.P., Ba J. Adam: A Method for Stochastic Optimization // CoRR, Т. abs/1412.6980, 2014.
- Bo Y.H., WeiL., I-Chen W. Stochastic Gradient Descent with Hyperbolic-Tangent Decay // CoRR, Т. abs/1806.01593, 2018. С. 1-10.
- Wilamowski B.M., Irwin D.J. Intelligent systems. 2-е-е изд. Бока-Ратон: CRC Press, 2011. 568 с.
- S. Smith J., Wu B., M. Wilamowski B. Neural Network Training With Leven-berg-Marquardt and Adaptable Weight Compression // IEEE Transactions on Neural Networks and Learning Systems, Т. PP, Jul 2018. С. 1-8.
- Szegedy C., Ioffe S., Vanhoucke V., Alemi A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning // International Conference on Learning Representations (ICLR) Workshop, 2016. С. 375-387.
- He K., Zhang X., Ren S., Sun J. [1502.01852] Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification // arXiv.org e-Print archive. 2015. URL: https://arxiv.org/abs/1502.01852 (дата обращения: 12.11.2020).
- Szegedy С., Liu W., Jia Y., Sermanet P., Reed S., Angueloy D., Ethan D., Vanhoucke V., Rabinovich A. Going deeper with convolutions // IEEE Confer-ence on Computer Vision and Pattern Recognition. 2014. С. 1-9.
- Zaccone G., Karim R., Menshawy A. Deep Learning with TensorFlow: Explore neural networks with Python. Бирмингем: Packt Publishing, 2017. 320 с.
- Вьюгин В.В. Математические основы теории машинного обучения и про-гнозирования. Москва: МЦНМО, 2013. 387 с.
- Shepherd A.J. Second-Order Methods for Neural Networks: Fast and Reliable Training Methods for Multi-Layer Perceptrons. New York: Springer, 1997. 160 с.
- Nocedal J., Wright S.J. Numerical Optimization. 2nd ed. New York: Springer, 2006. 664 с.
- Голубинский А.Н. О построении архитектур и оценке параметров искус-ственных нейронных сетей // Теория и техника радиосвязи, № 1, 2020. С. 72-87.
- Максимушкин В.В., Арзамасцев А.А. Сравнительная оценка вычислитель-ной сложности обучения искусственной нейронной сети с жестким ядром и сети с классической структурой // Вестник российских университетов. Математика., № 2, 2006. С. 190-197.
- Абрамов С.А. Лекции о сложности алгоритмов. Москва: МЦНМО, 2012. 248 с.
- Yann LeCun's Home Page [Электронный ресурс] // MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges: [сайт]. [2012]. URL: http://yann.lecun.com/exdb/mnist/ (дата обращения: 23.05.2020).
- Smith L.N. No More Pesky Learning Rate Guessing Games // CoRR, Vol. abs/1506.01186, 2015. С. 1-10.
- Salimans T., Kingma D.P. Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks // In: Advances in Neural In-formation Processing Systems 29. Curran Associates, Inc., 2016. С. 901–909.
- Matuszyk P., Castillo R.T., Kottke D., Spiliopoulou M. A Comparative Study on Hyperparameter Optimization for Recommender Systems // Workshop on Recommender Systems and Big Data Analytics (RS-BDA'16) @ iKNOW 2016. 2016.
- Hu G., Peng X., Yang Y., Hospedales T.M., Verbeek J. Frankenstein: Learning Deep Face Representations using Small Data // CoRR, Т. abs/1603.06470, 2016.
- Ioffe S., Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift // CoRR, Т. abs/1502.03167, 2015.
- Lewkowycz A., Bahri Y., Dyer E., Sohl-Dickstein J., Gur-Ari G. The large learning rate phase of deep learning: the catapult mechanism. 2020.
- Liao Q., Kawaguchi K., Poggio T.A. Streaming Normalization: Towards Sim-pler and More Biologically-plausible Normalizations for Online and Recurrent Learning // CoRR, Т. abs/1610.06160, 2016.
- Mahajan D., Girshick R.B., Ramanathan V., He K., Paluri M., Li Y., Bharambe A., van der Maaten L. Exploring the Limits of Weakly Supervised Pretraining // CoRR, Т. abs/1805.00932, 2018.
- Petroski Such F., Madhavan V., Conti E., Lehman J., Stanley K.O., Clune J. Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning // ArXiv e-prints, 2017.
- Su H., Zhu X., Gong S. Deep Learning Logo Detection with Data Expansion by Synthesising Context // CoRR, Т. abs/1612.09322, 2016.
- Touvron H., Vedaldi A., Douze M., Jégou H. Fixing the train-test resolution discrepancy // CoRR, Т. abs/1906.06423, 2019.
- Xu C., Qin T., Wang G., Liu T.Y. An Actor-Critic Algorithm For Learning Rate 2017. С. 1–12.
- Xu C., Qin T., Wang G., Liu T.Y. Reinforcement Learning for Learning Rate Control // CoRR, Т. abs/1705.11159, 2017.
补充文件
