Fuzzy Logic Approaches in the Task of Object Edge Detection

封面

如何引用文章

全文:

详细

The task of reducing the computational complexity of contour detection in images is considered in the article. The solution to the task is achieved by modifying the Canny detector and reducing the number of passes through the original image. In the first case, two passes are excluded when determining the adjacency of the central pixel with eight adjacent ones in a frame of size 3х3. In the second case, three passes are excluded, two as in the first case and the third one necessary to determine the angle of gradient direction. This passage is provided by a combination of fuzzy rules. The goal of the work is to increase the performance of computational operations in the process of detecting the edges of objects by reducing the number of passes through the original image. The process of edge detection is carried out by some computational operations of the Canny detector with the replacement of the most complex procedures. In the proposed methods, fuzzification of eight input variables is carried out after determining the gradient and the angle of its direction. The input variables are the gradient difference between the central and adjacent cells in a frame of size 3х3. Then a base of fuzzy rules is built. In the first method, four fuzzy rules and one pass are excluded depending on the angle of gradient direction. In the second method, sixteen fuzzy rules themselves set the angle of the gradient direction, while eliminating two passes along the image. The gradient difference between the central cell and adjacent cells makes it possible to take into account the shape of the gradient distribution. Then, based on the center of gravity method, the resulting variable is defuzzified. Further use of fuzzy a-cut makes it possible to binarize the resulting image with the selection of object edges on it. The presented experimental results showed that the noise level depends on the value of the a-cut and the parameters of the labels of the trapezoidal membership functions. The software was developed to evaluate fuzzy edge detection methods. The limitation of the two methods is the use of piecewise-linear membership functions. Experimental studies of the performance of the proposed edge detection approaches have shown that the time of the first fuzzy method is 18% faster compared to the Canny detector and 2% faster than the second fuzzy method. However, during the visual assessment, it was found that the second fuzzy method better determines the edges of objects.

作者简介

M. Bobyr

Southwest State University

Email: maxbobyr@gmail.com
Svetly pass. 1

A. Arkhipov

Southwest State University

Email: alex.76_09@mail.ru
50 years of October St. 94

S. Gorbachev

Tomsk State University

Email: spp03@sibmail.com
Lenin Ave. 36

J. Cao

Southeast University

Email: jdcao@seu.edu.cn
SEU Road, Jiangning District 2

S. Bhattacharyya

Rajnagar Mahalavidya affiliated to Burdwan University

Email: dr.siddhartha.bhattacharyya@gmail.com
Rajnagar 1

参考

  1. Yuksel M.E. Edge detection in noisy images by neuro-fuzzy processing. AEU – Int J Electron Commun 2007; 61(2, no. 1): 8289. http://dx.doi.org/10.1016/j.aeue.2006.02.006.
  2. Kang C.C, Wang W.J. A novel edge detection method based on the maximizing objective function. Pattern Recogn 2007; 40(2): 609–18. http://dx.doi.org/10.1016/j.patcog.2006.03.016.
  3. Lopez-Molina C., De Baets B., Bustince H. Generating fuzzy edge images from gradient magnitudes. Comput Vision Image Understand 2011; 115(11): 1571–80. http://dx.doi.org/10.1016/j.cviu.2011.07.003.
  4. Bovik A. Handbook of image and video processing. New York: Academic; 2000.
  5. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986; 8(6): 679–98.
  6. Sobel E. Camera Models and Machine Perception. Ph.D thesis. Stanford University, Stanford, California; 1970.
  7. Chen G, Yang Y.H.H. Edge detection by regularized cubic B-spline fitting. IEEE Trans Syst, Man Cybern 1995; 25: 636–43.
  8. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986; PAMI-8: 679–97.
  9. Shen J., Castan S. An optimal linear operator for step edge detection. Graph Models Image Process 1992; 54(1): 112–33.
  10. deSouza P. Edge detection using sliding statistical tests. Comput Vis, Graph Image Process 1983; 23(1).
  11. Bhandarkar S.M., Zhang Y., Potter W.D. An edge detection technique using genetic algorithm based optimization. Pattern Recognit 1994; 27(9): 1159–80.
  12. Srinivasan V., Bhatia P., Ong S.H. Edge detection using neural network. Pattern Recognit 1995; 27(12): 1653–62.
  13. Chen M.H., Lee D., Pavlidis T. Residual analysis for feature detection. IEEE Trans Pattern Anal Mach Intell 1991; 13: 30 – 40.
  14. Hebert T.J., Malagre D. Edge detection using a priori model. Int Conf Image Process 1994; 94: 303–7.
  15. Mejias A., Romero S., Moreno F. A new algorithm to extract the lines and edges through orthogonal projections. Digital Signal Process. - 2012; 22(1): 147–52.
  16. Rakesh R.R., Chaudhuri P., Murthy C.A. Thresholding in edge detection: a statistical approach. IEEE Trans Image Process 2004; 13(7): 927–36. http://dx.doi.org/10.1109/TIP.2004.828404.
  17. S. Uguz, U. Sahin, F. Sahin. Edge detection with fuzzy cellular automata transition function optimized by PSO. Computers and Electrical Engineering. - 2015; 43. – pp.180–192
  18. Alexander Zotin, Konstantin Simonov, Mikhail Kurako, Yousif Hamad, Svetlana Kirillova Edge detection in MRI brain tumor images based on fuzzy C-means clustering. Procedia Computer Science. – 2018; 126. – pp. 1261–1270
  19. Er-sen L., Shu-long Z., Bao-shan Z., Yong Z., Chao-gui X., Li-hua S. An Adaptive Edge Detection Method Based on The Canny Operator. IEEE Int. Conf. Environmental Sci. and Inform. Applicat. Technology 2009; p. 265–269.
  20. Cho S.M., Cho J.H. Thresholding for Edge Detection using Fuzzy Reasoning Technique. IEEE Int. Conf. Computational Sci. Proc. 1994; p. 1121–1124.
  21. Xiao W., Hui X. An Improved Canny Edge Detection Algorithm Based on Predisposal Method for Image Corrupted by Gaussian Noise. IEEE World Automation Congr. 2010; p. 113–116.
  22. Wang H.R., Yang J.L., Sun H.J., Chen D., Liu X.L. An improved Region Growing Method for Medical Image Selection and Evaluation Based on Canny Edge Detection. IEEE Int. Conf. Manage. and Service Sci. 2011; p. 1–4, doi: 10.1109/ICMSS.2011.5999180.
  23. Ranita Biswas, Jaya Sil An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets. Procedia Technology. 2012: 4. – pp. 820 – 824
  24. Shah, Hemang J. Detection of Tumor in MRI Images using Image Segmentation. International Journal of Advance Research in Computer Science and Management Studies. – 2014; 2(6).- pp. 53-56.
  25. Zotin Alexander, Konstantin Simonov, Fedor Kapsargin, Tatyana Cherepanova, Alexey Kruglyakov, and Luis Cadena. Techniques for Medical Images Processing Using Shearlet Transform and Color Coding”, in Favorskaya M. and Jain L. (eds) Computer Vision in Control Systems-4. Intelligent Systems. – 2018: 136, Springer, Cham.
  26. D. Xu, W. Ouyang, X. Alameda-Pineda, E. Ricci, X. Wang, and N. Sebe, “Learning deep structured multi-scale features using attention gated crfs for contour prediction,” in Conference on Neural Information Processing Systems, 2017, pp. 3964–3973.
  27. J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang, “Bi-directional cascade network for perceptual edge detection,” in IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 3828-3837.
  28. Jianzhong He et al. “Bi-directional cascade network for perceptual edge detection”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 3828–3837.
  29. Yang Liu, Zongwu Xie, and Hong Liu. “An Adaptive and Robust Edge Detection Method Based on Edge Proportion Statistics”. In: IEEE Transactions on Image Processing 29 (2020), pp. 5206–5215.
  30. S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Young Choi, “Action-decision networks for visual tracking with deep reinforcement learning,” in IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2711-2720.
  31. K.H. Choi and J.E. Ha, “Edge detection based-on U-Net using edge classification CNN,” Journal of Institute of Control, Robotics and Systems, vol. 25, no. 8, pp. 684-689, 2019 (in Korean).
  32. Yun Liu et al. “Richer convolutional features for edge detection”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 3000–3009.
  33. Xavier Soria Poma, Edgar Riba, and Angel Sappa. “Dense extreme inception network: Towards a robust cnn model for edge detection”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020, pp. 1923–1932.
  34. Raihan F., Ce W. “PCB defect detection USING OPENCV with image subtraction method”. In International Conference on Information Management and Technology, 2017, pp. 204-209.
  35. Lee D.H., Chen P.Y., Yang F.J., et al. “High-Efficient Low-Cost VLSI Implementation for Canny Edge Detection”. Journal of Information Science & Engineering, vol. 36, no. 3, 2020, pp. 34-57.
  36. François Chollet. “Xception: Deep learning with depthwise separable convolutions”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 1251–1258.
  37. Debotosh Bhattacharjee and Hiranmoy Roy. “Pattern of local gravitational force (PLGF): A novel local image descriptor”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 43.2 (2019), pp. 595–607.
  38. Mengtian Li et al. “Photo-sketching: Inferring contour drawings from images”. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE. 2019, pp. 1403–1412
  39. D. Dhillon and R. Chouhan. “Noise-aided Edge preserving Image Denoising using Non-Local Means with Stochastic Resonance”. In: 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). 2018, pp. 21–25.
  40. Animesh Sengupta et al. “Edge information based image fusion metrics using fractional order differentiation and sigmoidal functions”. In: IEEE Access 8 (2020), pp. 88385–88398.
  41. Benoit Brummer and Christophe De Vleeschouwer. “Natural image noise dataset”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019, pp. 139-151.
  42. Arash Akbarinia and C. Alejandro Parraga. “Feedback and surround modulated boundary detection”. In: International Journal of Computer Vision 126.12 (2018), pp. 1367–1380
  43. Y.X. Wang and J.M. Chen, “Iris edge detection algorithm based on adaptive canny operator and multi-directional Sobel operator,” Computer and Digital Engineering, Vol. 11, No. 4, pp. 2744–2749, 2020.
  44. C.W. Tian, X.C. Wang, and J.N. Yang, “Research on parallelization of kirsch operator edge detection algorithm for geological image,” (in Chinese), Journal of Xinjiang University, vol. 38, No. 1, pp. 54–60, 2021.
  45. J.H. Zeng and S.J. Huang, “Comparison and analysis on typical image edge detection operators,”Journal of Hebei Normal University (Natural Science), vol. 44, No. 1, pp. 295–300, 2020.
  46. S.J. Chen, X.H. Wang, Y.P. Ge, C. Li, and Y.C. Li., “Application of image edge extraction algorithm in the third land survey,” Computer Technology and Development, vol. 30, No. 10, pp. 161–166, 2020.
  47. Cadena, Luis, Franklin Cadena, Nikolai Espinosa, Anna Korneeva, Alexy Kruglyakov, Alexander Legalov, Alexey Romanenko, and Alexander Zotin. (2017) “Brain's tumor image processing using shearlet transform.” Proc. SPIE 10396, Applications of Digital Image Processing XL, 103961B, doi: 10.1117/12.2272792; in United States.
  48. Yuksel M.E., Borlu M. Accurate Segmentation of Dermoscopic Images by Image Thresholding Based on Type-2 Fuzzy Logic. IEEE Trans. Fuzzy Syst. 2009; vol. 17, no. 4, p. 976–982.
  49. M. Bobyr, A. Arkhipov, A. Yakushev, Shade recognition of the color label based on the fuzzy clustering, Inform. Autom. 20(2) (2021) 407–434, http://dx.doi.org/10.15622/ia.2021.20.2.6.
  50. Bobyr M.V., Emelyanov. S.G., A nonlinear method of learning neuro-fuzzy models for dynamic control systems, Appl. Soft Comput. J. 88 (2020) 106030, http://dx.doi.org/10.1016/j.asoc.2019.106030.
  51. Bobyr M.V., Milostnaya N.A., Kulabuhov S.A., A method of defuzzification based on the approach of areas’ ratio, Appl. Soft Comput. 59 (2017) 19–32, http://dx.doi.org/10.1016/j.asoc.2017.05.040.
  52. M.V. Bobyr, A.S. Yakushev, A.A. Dorodnykh, Fuzzy devices for cooling the cutting tool of the CNC machine implemented on FPGA, Meas.: J. Int. Meas. Confed. 152 (2020) http://dx.doi.org/10.1016/j.measurement.2019.107378.
  53. Bobyr M.V., Milostnaya N.A., Bulatnikov V.A. The fuzzy filter based on the method of areas' ratio. Applied Soft Computing. 117 (2022) 108449, https://doi.org/10.1016/j.asoc.2022.108449
  54. Bobyr M.V., Kulabukhov S.A. Simulation of control of temperature mode in cutting area on the basis of fuzzy logic. Journal of Machinery Manufacture and Reliability, 2017, 46(3), стр. 288–295. http://dx.doi.org/10.3103/S1052618817030049
  55. Sala, F.A. Design of false color palettes for grayscale reproduction. Displays, 2017, 46, 9–15. https://doi.org/10.1016/j.displa.2016.11.005
  56. Abdou, I.E., & Pratt, W.K. Quantitative design and evaluation of enhance-ment/thresholding edge detectors. Proceedings of the IEEE, 1979, 67(5), 753–763. doi: 10.1109/proc.1979.11325

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».