Approaches for Behavior Intensity Estimation in Groups of Heterogeneous Individuals: Precision and Applicability for Data with Uncertainty
- Authors: Stoliarova V.F1, Tulupyeva T.V1, Vyatkin A.A1
-
Affiliations:
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
- Issue: Vol 23, No 6 (2024)
- Pages: 1730-1753
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/271663
- DOI: https://doi.org/10.15622/ia.23.6.6
- ID: 271663
Cite item
Full Text
Abstract
About the authors
V. F Stoliarova
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: vfs@dscs.pro
14-th Line V.O. 39
T. V Tulupyeva
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: tvt@dscs.pro
14-th Line V.O. 39
A. A Vyatkin
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: aav@dscs.pro
14-th Line V.O. 39
References
- Chavez K., Palfai T.P., Cheng D.M., Blokhina E., Gnatienko N., Quinn E.K., Krupitsky E., Samet J.H. Hazardous Alcohol Use, Impulsivity, and HIV-Risk Behavior Among HIV-Positive Russian Patients With a History of Injection Drug Use // The American journal on addictions. 2021. vol. 30. no. 2. pp. 164–172.
- Hendrieckx C., Ivory N., Singh H., Frier B.M., Speight J. Impact of severe hypoglycaemia on psychological outcomes in adults with type 2 diabetes: a systematic review // Diabetic Medicine. 2019. vol. 36. no. 9. pp. 1082–1091.
- Пащенко А.Е., Тулупьев А.Л., Тулупьева Т.В., Красносельских Т.В., Соколовский Е.В. Косвенная оценка вероятности заражения ВИЧ-инфекцией на основе данных о последних эпизодах рискованного поведения // Здравоохранение Российской Федерации. 2010. № 2. С. 32–35.
- Wojciechowski T.W. Major depressive disorder as a moderator of the relationship between heavy-episodic drinking and anxiety symptoms // Journal of mental health. 2023. pp. 1–8. doi: 10.1080/09638237.2023.2245889.
- Lewer D., Freer J., King E., Larney S., Degenhardt L., Tweed E.J., Hope V., Harris M., Millar T., Hayward A., Ciccarone D., Morley K. Frequency of health-care utilization by adults who use illicit drugs: a systematic review and meta-analysis // Addiction. 2020. vol. 115. no. 6. pp. 1011–1023.
- Feldhege J., Moessner M., Bauer S. Who says what? Content and participation characteristics in an online depression community // Journal of Affective Disorders. 2020. vol. 263. pp. 521–527.
- Jiotsa B., Naccache B., Duval M., Rocher B., Grall-Bronnec M. Social media use and body image disorders: Association between frequency of comparing one’s own physical appearance to that of people being followed on social media and body dissatisfaction and drive for thinness // International journal of environmental research and public health. 2021. vol. 18. no. 6. doi: 10.3390/ijerph18062880.
- Олисеенко В.Д., Хлобыстова А.О., Корепанова А.А., Тулупьева Т.В. Автоматизация оценки темперамента пользователей онлайн социальной сети // Доклады Российской академии наук. Математика, информатика, процессы управления. 2023. Т. 514. № 2. С. 235–241. doi: 10.31857/S2686954323601471.
- Khlobystova A.O., Abramov M.V., Tulupyev A.L. Soft estimates for social engineering attack propagation probabilities depending on interaction rates among instagram users // Intelligent Distributed Computing XIII. Springer International Publishing, 2020. pp. 272–277.
- Grandell J. Mixed Poisson Processes. Monographs on Statistics and Applied Probability. Chapman and Hall/CRC. 1997. 280 p.
- Cook R.J., Lawless J.F. The statistical analysis of recurrent events. Springer New York, 2007. 404 p.
- Stoliarova V.F., Tulupyev A.L., Cox regression in the problem of risky behavior parameter estimation based on the last episodes’ data // St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 2021. vol. 14(4). pp. 202–217. doi: 10.18721/JPM.14415.
- Rahgozar M., Faghihzadeh S., Babaee Rouchi G., Peng Y. The power of testing a semi-parametric shared gamma frailty parameter in failure time data // Statistics in medicine. 2008. vol. 27. no. 21. pp. 4328–4339.
- Balan T.A., Putter H. A tutorial on frailty models // Statistical methods in medical research. 2020. vol. 29. no. 11. pp. 3424–3454.
- Czado C. Analyzing dependent data with vine copulas // Lecture Notes in Statistics, Springer. 2019. 242 p.
- Nelsen R.B. An introduction to copulas (Springer Series in Statistics). Springer, 2006. 286 p.
- Столярова В.Ф. Копулы и моделирование зависимости: косвенные оценки интенсивности рискованного поведения // Компьютерные инструменты в образовании. 2018. № 3. С. 22–37.
- Kojadinovic I., Yan J. Comparison of three semiparametric methods for estimating dependence parameters in copula models // Insurance: Mathematics and Economics. 2010. vol. 47. no. 1. pp. 52–63.
- Qian L., Zhao Y., Yang J., Li H., Wang H., Bai C. A new estimation method for copula parameters for multivariate hydrological frequency analysis with small sample sizes // Water Resources Management. 2022. vol. 36. no. 4. pp. 1141–1157.
- Суворова А.В., Тулупьев А.Л., Пащенко А.Е., Тулупьева Т.В., Красносельских Т.В. Анализ гранулярных данных и знаний в задачах исследования социально значимых видов поведения // Компьютерные инструменты в образовании. 2010. № 4. С. 30–38.
- Suvorova A., Tulupyev A. Learning Bayesian network structure for risky behavior modelling // Proceedings of the Third International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’18). Springer International Publishing, 2019. pp. 58–65.
- Суворова А.В., Тулупьев А.Л., Сироткин А.В. Байесовские сети доверия в задачах оценивания интенсивности рискованного поведения // Нечеткие системы и мягкие вычисления. 2014. Т. 9. № 2. С. 115–129.
- Тулупьев А.Л., Николенко С.И., Сироткин А.В. Основы теории байесовских сетей. СПб: СПбГУ, 2019. 399 с.
- Koller D., Friedman N. Probabilistic graphical models: principles and techniques. MIT press, 2009. 1230 p.
- Langseth H., Nielsen T.D., Rumı R., Salmeron A. Mixtures of truncated basis functions // International Journal of Approximate Reasoning. 2012. vol. 53. no. 2. pp. 212–227.
- Perez-Bernabe I., Maldonado A.D., Nielsen T.D., Salmeron A. Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions // R Journal. 2020. vol. 12. no. 2. pp. 321–341.
- Scutari M., Denis J.-B. Bayesian Networks with Examples in R. 2nd edition. Chapman and Hall, Boca Raton. 2021. 274 p.
- Czado C., Nagler T. Vine copula based modeling // Annual Review of Statistics and Its Application. 2022. vol. 9. no. 1. pp. 453–477.
- Kolouri S., Kolouri S., Park S.R., Thorpe M., Slepcev D., Rohde G.K. Optimal mass transport: Signal processing and machine-learning applications // IEEE signal processing magazine. 2017. vol. 34. no. 4. pp. 43–59.
- Hanea A.M., Hemming V., Nane G.F. Uncertainty quantification with experts: present status and research needs // Risk Analysis. 2022. vol. 42. no. 2. pp. 254–263.
Supplementary files
