Dynamic Foraging in Swarm Robotics: A Hybrid Approach with Modular Design and Deep Reinforcement Learning Intelligence

封面

如何引用文章

全文:

详细

This paper proposes a hybrid approach that combines intelligent algorithms and modular design to solve a foraging problem within the context of swarm robotics. Deep reinforcement learning (RL) and particle swarm optimization (PSO) are deployed in the proposed modular architecture. They are utilized to search for many resources that vary in size and exhibit a dynamic nature with unpredictable movements. Additionally, they transport the collected resources to the nest. The swarm comprises 8 E-Puck mobile robots, each equipped with light sensors. The proposed system is built on a 3D environment using the Webots simulator. Through a modular approach, we address complex foraging challenges characterized by a non-static environment and objectives. This architecture enhances manageability, reduces computational demands, and facilitates debugging processes. Our simulations reveal that the RL-based model outperforms PSO in terms of task completion time, efficiency in collecting resources, and adaptability to dynamic environments, including moving targets. Notably, robots equipped with RL demonstrate enhanced individual learning and decision-making abilities, enabling a level of autonomy that fosters collective swarm intelligence. In PSO, the individual behavior of the robots is more heavily influenced by the collective knowledge of the swarm. The findings highlight the effectiveness of a modular design and deep RL for advancing autonomous robotic systems in complex and unpredictable environments.

作者简介

A. Hammoud

Federal State Budgetary Educational Institution of Higher Education “Kuban State Agrarian University named after I.T. Trubilin”

编辑信件的主要联系方式.
Email: ali-hammoud@mail.ru
Kalinina St. 13

A. Iskandar

University of Miskolc

Email: iskandar.alaa@student.uni-miskolc.hu
Egyetemvaros -

B. Kovács

University of Miskolc

Email: matmn@uni-miskolc.hu
Egyetemvaros -

参考

  1. Cheraghi A., Shahzad S., Graffi K. Past, present, and future of swarm robotics. In Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys). Springer International Publishing. 2022. vol. 3. pp. 190–233.
  2. Brambilla M., Ferrante E., Birattari M., Dorigo M. Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence. 2013. vol. 7. pp. 1–41.
  3. Schranz M., Umlauft M., Sende M., Elmenreich W. Swarm robotic behaviors and current applications. Frontiers in Robotics and AI. 2020. vol. 7. doi: 10.3389/frobt.2020.00036.
  4. Li J., Tan Y. A probabilistic finite state machine based strategy for multi-target search using swarm robotics. Applied Soft Computing. 2019. vol. 77. pp. 467–483.
  5. Iskandar A., Kovacs B. A Survey on Automatic Design Methods for Swarm Robotics Systems. Carpathian Journal of Electronic and Computer Engineering. 2021. vol. 14. no. 2. pp. 1–5.
  6. Jin B., Liang Y., Han Z., Ohkura K. Generating collective foraging behavior for robotic swarm using deep reinforcement learning. Artificial Life and Robotics. 2020. vol. 25. pp. 588–595.
  7. Kakish Z., Elamvazhuthi K., Berman S. Using reinforcement learning to herd a robotic swarm to a target distribution. In Distributed Autonomous Robotic Systems: 15th International Symposium. Springer International Publishing. 2022. pp. 401–414.
  8. Na S., Roucek T., Ulrich J., Pikman J., Krajnik T., Lennox B., Arvin F. Federated reinforcement learning for collective navigation of robotic swarms. IEEE Transactions on Cognitive and Developmental Systems. 2023. vol. 15. no. 4. pp. 2122–2131.
  9. Wang Y., Damani M., Wang P., Cao, Y., Sartoretti G. Distributed reinforcement learning for robot teams: A review. Current Robotics Reports. 2022. vol. 3. no. 4. pp. 239–257.
  10. Blais M., Akhloufi M. Reinforcement learning for swarm robotics: An overview of applications, algorithms and simulators. Cognitive Robotics. 2023. vol. 3. pp. 226–256. doi: 10.1016/j.cogr.2023.07.004.
  11. Dias P., Silva M., Rocha Filho G., Vargas P., Cota L., Pessin G. Swarm robotics: A perspective on the latest reviewed concepts and applications. Sensors. 2021. vol. 21. no. 6. doi: 10.3390/s21062062.
  12. Orr J., Dutta A. Multi-agent deep reinforcement learning for multi-robot applications: a survey. Sensors. 2023. vol. 23. no. 7. doi: 10.3390/s23073625.
  13. Aznar F., Pujol M., Rizo, R. Learning a swarm foraging behavior with microscopic fuzzy controllers using deep reinforcement learning. Applied Sciences. 2021. vol. 11. no. 6. doi: 10.3390/app11062856.
  14. Loffler R., Panizon E., Bechinger C. Collective foraging of active particles trained by reinforcement learning. Scientific Reports. 2023. vol. 13. no. 1. doi: 10.1038/s41598-023-44268-3.
  15. Alaa I., Bela K. Curriculum learning for deep reinforcement learning in swarm robotic navigation task. Multidiszciplinaris Tudomanyok. 2023. vol. 13. no. 3. pp. 175–187.
  16. Altshuler Y. Recent Developments in the Theory and Applicability of Swarm Search. Entropy. 2023. vol. 25. no. 5. doi: 10.3390/e25050710.
  17. Lee W., Vaughan N., Kim D. Task allocation into a foraging task with a series of subtasks in swarm robotic system. IEEE Access. 2020. vol. 8. pp. 107549–107561.
  18. Adams S., Jarne O, Mazo J. A self-guided approach for navigation in a minimalistic foraging robotic swarm. Autonomous Robots. 2023. vol. 47. no. 7. pp. 905–920.
  19. Lee K., Kong F., Cannizzaro R., Palmer J., Johnson D., Yoo C., Fitch R. An upper confidence bound for simultaneous exploration and exploitation in heterogeneous multi-robot systems. In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. pp. 8685–8691.
  20. Talamali M., Bose T., Haire M., Xu X., Marshall J., Reina A. Sophisticated collective foraging with minimalist agents: A swarm robotics test. Swarm Intelligence. 2020. vol. 14. no. 1. pp. 25–56.
  21. Wang X., Guo H. Mobility-aware computation offloading for swarm robotics using deep reinforcement learning. In 2021 IEEE 18th Annual Consumer Communications and Networking Conference (CCNC). IEEE, 2021. pp. 1–4.
  22. Michel O. Cyberbotics ltd. webots™: professional mobile robot simulation. International Journal of Advanced Robotic Systems. 2004. vol. 1. no. 1. doi: 10.5772/5618.

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».