Analytical Review of Task Allocation Methods for Human and AI Model Collaboration
- Autores: Ponomarev A.V1, Agafonov А.A1
-
Afiliações:
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
- Edição: Volume 24, Nº 1 (2025)
- Páginas: 229-274
- Seção: Artificial intelligence, knowledge and data engineering
- URL: https://journal-vniispk.ru/2713-3192/article/view/278228
- DOI: https://doi.org/10.15622/ia.24.1.9
- ID: 278228
Citar
Texto integral
Resumo
Sobre autores
A. Ponomarev
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: ponomarev@iias.spb.su
14-th Line V.O. 39
А. Agafonov
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Email: agafonov.a@spcras.ru
14-th Line V.O. 39
Bibliografia
- Wilder B., Horvitz E., Kamar E. Learning to Complement Humans // IJCAI’20: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. 2020. pp. 1526–1533.
- Madras D., Pitassi T., Zemel R. Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer // Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018). 2018. pp. 6150–6160.
- Chow C.K. On Optimum Recognition Error and Reject Tradeoff // IEEE Trans. Inf. Theory. 1970. vol. 16. no. 1. pp. 41–46.
- Cortes C., DeSalvo G., Mohri M. Learning with rejection // Algorithmic Learning Theory (ALT 2016). Lecture Notes in Computer Science. 2016. vol. 9925. pp. 67–82.
- Алексеев А., Носков Ф., Панов М. Непараметрическая регрессия с возможностью отказа от предсказания // ИТиС 2022. Институт проблем передачи информации им. А.А. Харкевича РАН (Москва), 2022. С. 215–226.
- Lyons J.B., Sycara K., Lewis M., Capiola A. Human–Autonomy Teaming: Definitions, Debates, and Directions // Frontiers in Psychology. 2021. vol. 12. doi: 10.3389/fpsyg.2021.589585.
- Shively R.J., Lachter J., Brandt S.L., Matessa M., Battiste V., Johnson W.W. Why Human-Autonomy Teaming? // Advances in Neuroergonomics and Cognitive Engineering (AHFE 2017). Cham: Springer, 2018. vol. 586. pp. 3–11.
- Кильдеева С., Катасёв А., Талипов Н. Модели и методы прогнозирования и распределения заданий по исполнителям в системах электронного документооборота // Вестник Технологического университета. 2021. Т. 24. № 1. С. 79–85.
- Hendrickx K., Perini L., Van der Plas D., Meert W., Davis J. Machine learning with a reject option: a survey // Machine Learning. 2024. vol. 113. no. 5. pp. 3073–3110.
- Leitão D., Saleiro P. Human-AI Collaboration in Decision-Making: Beyond Learning to Defer // Workshop on Human-Machine Collaboration and Teaming, ICML. 2022.
- Zahedi Z., Kambhampati S. Human-AI Symbiosis: A Survey of Current Approaches. arXiv preprint arXiv:2103.09990. 2021. doi: 10.48550/arXiv.2103.09990.
- Kitchenham B., Charters S. Guidelines for performing Systematic Literature Reviews in Software Engineering. Keele, Staffs: Kitchenham, 2007. 65 p.
- Snyder H. Literature review as a research methodology: An overview and guidelines // Journal of business research. 2019. vol. 104. pp. 333–339.
- Mozannar H., Sontag D. Consistent estimators for learning to defer to an expert // 37th International Conference on Machine Learning. 2020. pp. 7076–7087.
- Raghu M., Blumer K., Corrado G., Kleinberg J., Obermeyer Z., Mullainathan S. The Algorithmic Automation Problem: Prediction, Triage, and Human Effort. arXiv preprint arXiv:1903.12220. 2019.
- Ma S., Le Y., Wang X., Zheng C., Shi C., Yin M., Ma X. Who Should I Trust: AI or Myself? Leveraging Human and AI Correctness Likelihood to Promote Appropriate Trust in AI-Assisted Decision-Making // Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. New York, USA: ACM, 2023. pp. 1–19. doi: 10.1145/3544548.3581058.
- Vodrahalli K., Gerstenberg T., Zou J. Uncalibrated Models Can Improve Human-AI Collaboration // Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022). 2022. vol. 35. pp. 4004–4016.
- Charusaie M.-A., Mozannar H., Sontag D., Samadi S. Sample Efficient Learning of Predictors that Complement Humans // Proceedings of the 39th International Conference on Machine Learning. 2022. pp. 2972–3005.
- Okati N., De A., Gomez-Rodriguez M. Differentiable Learning Under Triage // Advances in Neural Information Processing Systems. 2021. vol. 34. pp. 9140–9151.
- Verma R., Nalisnick E. Calibrated Learning to Defer with One-vs-All Classifiers // Proceedings of the 39 th International Conference on Machine Learning. 2022. pp. 22184–22202.
- Gao R., Maytal Saar-Tsechansky M., De-Arteaga M., Han L., Sun W., Kyung Lee M., Lease M.. Learning Complementary Policies for Human-AI Teams. arXiv preprint arXiv:2302.02944. 2023.
- Hemmer P., Schellhammer S., Vössing M., Jakubik J., Satzger G. Forming Effective Human-AI Teams: Building Machine Learning Models that Complement the Capabilities of Multiple Experts // Proceedings of the 31st International Joint Conference on Artificial Intelligence (IJCAI-22). 2022. pp. 2478–2484. doi: 10.24963/ijcai.2022/344.
- Steyvers M., Tejeda H., Kerrigan G., Smyth P. Bayesian modeling of human–AI complementarity // Proceedings of the National Academy of Sciences (Proceedings of the National Academy of Sciences of the United States of America). 2022. vol. 119. no. 11. doi: 10.1073/pnas.2111547119.
- Lemmer S.J., Corso J.J. Evaluating and Improving Interactions with Hazy Oracles // Proceedings of the AAAI Conference on Artificial Intelligence. 2023. vol. 37. no. 5. pp. 6039–6047.
- Alves J.V., Leitão D., Jesus S., Sampaio M., Saleiro P., Figueiredo M., Bizarro P. FiFAR: A Fraud Detection Dataset for Learning to Defer. arXiv preprint arXiv:2312.13218. 2023.
- Straitouri E., Adish Singla A., Balazadeh Meresht V., Gomez-Rodriguez M. Reinforcement Learning Under Algorithmic Triage. arXiv preprint arXiv:2109.11328. 2021.
- Verma R., Barrejón D., Nalisnick E. Learning to Defer to Multiple Experts: Consistent Surrogate Losses, Confidence Calibration, and Conformal Ensembles // Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. 2023. pp. 11415–11434.
- De A., Okati N., Zarezade A., Gomez Rodriguez M. Classification Under Human Assistance // The 35th AAAI Conference on Artificial Intelligence (AAAI-21). 2021. vol. 35(7). pp. 5905–5913.
- Liu D.-X., Mu X., Qian C. Human Assisted Learning by Evolutionary Multi-Objective Optimization // Proceedings of the AAAI Conference on Artificial Intelligence. 2023. vol. 37. no. 10. pp. 12453–12461.
- Showalter S., Boyd A., Smyth P., Steyvers M. Bayesian Online Learning for Consensus Prediction // Proceedings of The 27th International Conference on Artificial Intelligence and Statistics. 2024. vol. 238. pp. 2539–2547.
- Keswani V., Lease M., Kenthapadi K. Towards Unbiased and Accurate Deferral to Multiple Experts // AIES 2021 – Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. New York, USA: ACM, 2021. pp. 154–165.
- Mao A. et al. Two-Stage Learning to Defer with Multiple Experts // NIPS '23: Proceedings of the 37th International Conference on Neural Information Processing Systems. 2023. pp. 3578–3606.
- Mao A., Mohri M., Zhong Y. Principled Approaches for Learning to Defer with Multiple Experts // International Symposium on Artificial Intelligence and Mathematics (ISAIM 2024). 2024. pp. 107–135.
- Noti G., Chen Y. Learning When to Advise Human Decision Makers // Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2023. pp. 3038–3048.
- De A., Koley P., Ganguly N., Gomez-Rodriguez M. Regression under human assistance // Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020. pp. 2611–2620.
- Kobayashi M., Wakabayashi K., Morishima A. Human+AI Crowd Task Assignment Considering Result Quality Requirements // Proceedings of the AAAI Conf. Hum. Comput. Crowdsourcing. 2021. vol. 9. pp. 97–107.
- Lai V., Carton S., Bhatnagar R., Liao Q.V., Zhang Y., Tan C. Human-AI Collaboration via Conditional Delegation: A Case Study of Content Moderation // Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 2022. pp. 1–18. doi: 10.1145/3491102.3501999.
- Gao R., Saar-Tsechansky M., De-Arteaga M., Han L., Lee M.K., Lease M. Human-AI Collaboration with Bandit Feedback // Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI 2021). 2021. pp. 1722–1728.
- Narasimhan H., Jitkrittum W., Menon A.K., Rawat A., Kumar S.. Post-hoc Estimators for Learning to Defer to an Expert // Advances in Neural Information Processing Systems. 2022. vol. 35. pp. 29292–29304.
- Popat R., Ive J. Embracing the uncertainty in human–machine collaboration to support clinical decision-making for mental health conditions // Frontiers in Digital Health. 2023. vol. 5. doi: 10.3389/fdgth.2023.1188338.
- Zhang Z., Wells K., Carneiro G. Learning to Complement with Multiple Humans (LECOMH): Integrating Multi-rater and Noisy-Label Learning into Human-AI Collaboration. arXiv preprint arXiv:2311.13172. 2023.
- Straitouri E., Wang L., Okati N., Gomez Rodriguez M. Improving Expert Predictions with Conformal Prediction // Proceedings of the 40th International Conference on Machine Learning. 2023. pp. 32633–32653.
- Gao R., Yin M. Confounding-Robust Policy Improvement with Human-AI Teams. arXiv preprint arXiv:2310.08824. 2023.
- Kerrigan G., Smyth P., Steyvers M. Combining Human Predictions with Model Probabilities via Confusion Matrices and Calibration // Advances in Neural Information Processing Systems. 2021. vol. 34. pp. 4421–4434.
- Raman N., Yee M. Improving Learning-to-Defer Algorithms Through Fine-Tuning // 1st Workshop on Human and Machine Decisions (WHMD 2021) at NeurIPS. 2021. 6 p.
- Hemmer P., Westphal M., Schemmer M., Vetter S., Vossing M., Satzger G. Human-AI Collaboration: The Effect of AI Delegation on Human Task Performance and Task Satisfaction // Proceedings of the 28th International Conference on Intelligent User Interfaces. New York, NY, USA: ACM, 2023. pp. 453–463.
- Gupta S. et al. Take Expert Advice Judiciously: Combining Groupwise Calibrated Model Probabilities with Expert Predictions // ECAI 2023. Front. Artif. Intell. Appl. 2023. vol. 372. pp. 956–963.
- Babbar V., Bhatt U., Weller A. On the Utility of Prediction Sets in Human-AI Teams // Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2022. pp. 2457–2463.
- Mozannar H., Satyanarayan A., Sontag D. Teaching Humans When To Defer to a Classifier via Exemplars // Proceedings of the 36th AAAI Conf. Artif. Intell (AAAI 2022). 2022. vol. 36(5). pp. 5323–5331.
- Singh S., Jain S., Jha S.S. On Subset Selection of Multiple Humans To Improve Human-AI Team Accuracy // Proceedings of the e 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023). 2023. pp. 317–325.
- Bansal G., Nushi B., Kamar E., Horvitz E., Weld D.S. Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork // Proceedings of the AAAI Conference on Artificial Intelligence. 2021. vol. 35(13). pp. 11405–11414.
- Mozannar H., Lang H., Wei D., Sattigeri P., Das S., Sontag D. Who Should Predict? Exact Algorithms For Learning to Defer to Humans // Proceedings of the The 26th International Conference on Artificial Intelligence and Statistics (PLMR 2023). 2023. vol. 206. pp. 10520–10545.
- Joshi S., Parbhoo S., Doshi-Velez F. Learning-to-defer for sequential medical decision-making under uncertainty. Trans. Mach. Learn. Res. 2021. vol. 2023.
- Cordelia L.P., De Stefano S., Tortorella F., Vento M. A Method for Improving Classification Reliability of Multilayer Perceptrons // IEEE Trans. Neural Networks. 1995. vol. 6. pp. 1140–1147.
- De Stefano C., Sansone C., Vento M. To reject or not to reject: that is the question – an answer in case of neural classifiers // IEEE Transactions on Systems, Man, and Cybernetics, Part C. 2000. vol. 30. pp. 84–94.
- Gal Y., Ghahramani Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning // Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML 2016). 2016. vol. 48. pp. 1050–1059.
- Geifman Y., El-Yaniv R. Selective classification for deep neural networks // Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems. 2017. pp. 4878–4887.
- Lakshminarayanan B., Pritzel A., Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles // Adv. Neural Inf. Process. Syst. 2017. vol. 30. pp. 6403–6414.
- Raghu M., Blumer K., Sayres R., Obermeyer Z., Kleinberg R., Mullainathan S., Kleinberg J. Direct Uncertainty Prediction with Applications to Healthcare. 2018. pp. 1–14.
- Platt J.C. Using analytic QP and sparseness to speed training of support vector machines // Advances in neural information processing systems. 1999. pp. 557–563.
- Cohn D., Atlas L., Ladner R. Improving Generalization with Active Learning // Mach. Learn. 1994. vol. 15. no. 2. pp. 201–221.
- Hemmer P., Thede Д., Vössing M., Jakubik J., Kühl N. Learning to Defer with Limited Expert Predictions // Proceedings of the 37th AAAI Conf. Artif. Intell. AAAI 2023. 2023. vol. 37. pp. 6002–6011.
- Goh H.W., Tkachenko U., Mueller J. CROWDLAB: Supervised learning to infer consensus labels and quality scores for data with multiple annotators // arXiv preprint arXiv:2210.06812. 2022.
- Xiao R., Dong Y., Wang H., Feng L., Wu R., Chen G., Zhao J. ProMix: Combating Label Noise via Maximizing Clean Sample Utility // Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 2023. vol. 2023-Augus. pp. 4442–4450.
- Garg A., Nguyen C., Felix R., Do T.-T., Carneiro G. Instance-Dependent Noisy Label Learning via Graphical Modelling // Proceedings of the 2023 IEEE Winter Conf. Appl. Comput. Vision (WACV 2023). 2023. pp. 2287–2297.
- Peterson J., Battleday R., Griffiths T., Russakovsky O. Human uncertainty makes classification more robust // Proceedings of the IEEE Int. Conf. Comput. Vis. 2019. pp. 9616–9625. doi: 10.1109/ICCV.2019.00971.
- Lintott C.J., Schawinski K., Slosar A., Land K., Bamford S., Thomas D., Raddick D., Nichol R.C., Szalay A.S., Andreescu D., Murray P., Vandenberg J. Galaxy Zoo: Morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey // Monthly Notices of the Royal Astronomical Society. 2008. vol. 389. no. 3. pp. 1179–1189.
- Kamar E., Hacker S., Horvitz E. Combining human and machine intelligence in large-scale crowdsourcing // Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012). 2012. vol. 1. pp. 467–474.
- Majkowska A., Mittal S., Steiner D.F., Reicher J.J., McKinney S.M., Duggan G.E., Eswaran K., Cameron Chen P.-H., Liu Y., Raju Kalidindi S., Ding A., Corrado G.S., Tse D., Shetty S. Chest radiograph interpretation with deep learning models: Assessment with radiologist-adjudicated reference standards and population-adjusted evaluation // Radiology. 2020. vol. 294. no. 2. pp. 421–431.
- Wang X., Peng Y., Lu L., Lu Z., Bagheri M., Summers R. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases // Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. pp. 3462–3471.
- Salehi P., Chiou E., Mancenido M., Mosallanezhad A., Cohen M., Shah A. Decision Deferral in a Human-AI Joint Face-Matching Task: Effects on Human Performance and Trust // Proceedings of the Human Factors and Ergonomics Society. 2021. vol. 65. no. 1. pp. 638–642.
- Bondi E., Koster R., Sheahan H., Chadwick M., Bachrach Y., Cemgil T., Paquet U., Dvijotham K.. Role of Human-AI Interaction in Selective Prediction // Proc. 36th AAAI Conf. Artif. Intell. AAAI 2022. 2022. vol. 36. pp. 5286–5294.
- Collins K., Barker M., Espinosa Zarlenga M., Raman N., Bhatt U., Jamnik M., Sucholutsky I., Weller A., Dvijotham K. Human Uncertainty in Concept-Based AI Systems // AIES 2023: Proc. of the AAAI/ACM Conf. on AI, Ethics, and Society. 2023. pp. 869–889.
- Donahue K., Gollapudi S., Kollias K. When Are Two Lists Better Than One?: Benefits and Harms in Joint Decision-Making // Proceedings of the AAAI Conf. Artif. Intell. 2024. vol. 38. no. 9. pp. 10030–10038.
- Spitzer P., Holstein J., Hemmer P., Vössing M., Kühl N., Martin D., Satzger G. On the Effect of Contextual Information on Human Delegation Behavior in Human-AI collaboration. arXiv preprint arXiv:2401.04729. 2024.
Arquivos suplementares
